cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A298241 Decimal expansion of BesselI(1,2/3)/BesselI(0,2/3).

Original entry on oeis.org

3, 1, 6, 0, 8, 9, 2, 4, 1, 2, 6, 8, 2, 2, 1, 1, 8, 4, 0, 9, 5, 6, 0, 1, 6, 9, 1, 7, 1, 0, 5, 1, 8, 1, 1, 4, 7, 6, 6, 8, 6, 2, 9, 2, 7, 0, 0, 7, 0, 4, 1, 8, 2, 0, 7, 3, 9, 5, 4, 0, 0, 7, 3, 4, 7, 3, 2, 4, 1, 1, 6, 1, 8, 0, 4, 2, 7, 3, 5, 5, 9, 1, 8, 9, 8, 6, 6, 0, 7, 2, 1, 6, 4, 3, 9, 0, 0, 6, 6, 3, 3, 8, 1, 2, 7, 3, 8, 2, 3, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2018

Keywords

Examples

			0.3160892412682211840956016917105181147668629270070418207...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselI[1, 2/3]/BesselI[0, 2/3], 10, 110] [[1]]
    RealDigits[Hypergeometric0F1[2, (2/3)^2/4] /(3 Gamma[2] Hypergeometric0F1[1, (2/3)^2/4]), 10, 110][[1]]
  • PARI
    besseli(1,2/3)/besseli(0,2/3) \\ Michel Marcus, Jul 03 2018

Formula

Equals 1/(3 + 1/(6 + 1/(9 + 1/(12 + 1/(15 + 1/(18 + ...)))))).

A298243 Decimal expansion of BesselI(1,2/5)/BesselI(0,2/5).

Original entry on oeis.org

1, 9, 6, 1, 0, 3, 8, 1, 2, 2, 1, 7, 9, 9, 5, 5, 1, 3, 4, 0, 8, 3, 6, 1, 0, 6, 4, 6, 2, 6, 8, 7, 8, 5, 1, 7, 3, 7, 2, 5, 0, 5, 8, 0, 9, 4, 4, 6, 4, 2, 7, 0, 0, 2, 1, 1, 7, 6, 1, 7, 1, 4, 6, 5, 6, 6, 4, 7, 2, 0, 7, 2, 4, 6, 8, 6, 9, 5, 0, 7, 4, 4, 7, 5, 7, 5, 2, 4, 7, 4, 2, 7, 1, 4, 1, 2, 4, 4, 5, 3, 3, 2, 1, 3, 0, 7, 2, 0, 4, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2018

Keywords

Examples

			0.1961038122179955134083610646268785173725058094464270021...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselI[1, 2/5]/BesselI[0, 2/5], 10, 110] [[1]]
    RealDigits[Hypergeometric0F1[2, (2/5)^2/4]/(5 Gamma[2] Hypergeometric0F1[1, (2/5)^2/4]), 10, 110][[1]]
  • PARI
    besseli(1,2/5)/besseli(0,2/5) \\ Michel Marcus, Jul 03 2018

Formula

Equals 1/(5 + 1/(10 + 1/(15 + 1/(20 + 1/(25 + 1/(30 + ...)))))).

A308741 Decimal expansion of BesselI(1/4,1/2)/BesselI(-3/4,1/2).

Original entry on oeis.org

8, 3, 6, 3, 3, 8, 5, 3, 1, 2, 0, 1, 2, 9, 6, 6, 0, 0, 7, 6, 3, 6, 7, 2, 7, 9, 9, 1, 1, 7, 4, 6, 7, 8, 2, 9, 4, 3, 5, 8, 5, 0, 2, 9, 8, 9, 5, 4, 6, 6, 1, 6, 1, 3, 1, 7, 8, 1, 1, 6, 6, 3, 3, 2, 1, 6, 6, 4, 7, 5, 3, 5, 3, 9, 3, 5, 8, 5, 4, 2, 4, 6, 2, 9, 7, 5, 3, 4, 3, 0, 2, 4, 2, 0, 4, 9, 3, 9, 5, 6, 4, 3, 5, 7, 7, 9, 1, 5, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 21 2019

Keywords

Examples

			0.83633853120129660076367279911746782943585...
		

Crossrefs

Cf. A016813 (continued fraction), A298242, A308739, A308740, A308742, A308743, A308744.

Programs

  • Mathematica
    RealDigits[BesselI[1/4, 1/2]/BesselI[-3/4, 1/2], 10, 109] [[1]]
  • PARI
    besseli(1/4,1/2)/besseli(-3/4,1/2) \\ Charles R Greathouse IV, Oct 23 2023

Formula

Equals 1/(1 + 1/(5 + 1/(9 + 1/(13 + 1/(17 + 1/(21 + 1/(25 + 1/(29 + 1/(33 + 1/(37 + ...)))))))))).

A308742 Decimal expansion of BesselI(3/4,1/2)/BesselI(-1/4,1/2).

Original entry on oeis.org

3, 1, 8, 3, 6, 6, 2, 4, 6, 7, 2, 8, 3, 1, 6, 4, 7, 1, 6, 8, 1, 9, 0, 8, 7, 0, 7, 6, 4, 4, 3, 8, 6, 9, 3, 4, 7, 3, 9, 9, 7, 9, 5, 3, 0, 1, 2, 4, 2, 1, 0, 4, 6, 3, 7, 6, 0, 3, 0, 6, 4, 2, 0, 4, 0, 5, 7, 5, 3, 3, 3, 8, 7, 5, 9, 3, 0, 1, 4, 2, 9, 0, 9, 4, 9, 7, 3, 7, 3, 3, 1, 1, 7, 8, 2, 0, 1, 1, 1, 6, 4, 4, 0, 0, 1, 4, 9, 1, 7, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 21 2019

Keywords

Examples

			0.31836624672831647168190870764438693473997953012421...
		

Crossrefs

Cf. A004767 (continued fraction), A298242, A308739, A308740, A308741, A308743, A308744.

Programs

  • Mathematica
    RealDigits[BesselI[3/4, 1/2]/BesselI[-1/4, 1/2], 10, 110] [[1]]
  • PARI
    besseli(3/4,1/2)/besseli(-1/4,1/2) \\ Charles R Greathouse IV, Oct 23 2023

Formula

Equals 1/(3 + 1/(7 + 1/(11 + 1/(15 + 1/(19 + 1/(23 + 1/(27 + 1/(31 + 1/(35 + 1/(39 + ...)))))))))).

A316352 Decimal expansion of (BesselI(0,1/2)-BesselI(1,1/2))/(BesselI(0,1/2)-3*BesselI(1,1/2)).

Original entry on oeis.org

2, 7, 7, 9, 8, 0, 6, 0, 7, 9, 1, 5, 0, 3, 5, 6, 9, 1, 3, 9, 0, 2, 9, 6, 2, 1, 8, 4, 5, 5, 3, 1, 2, 0, 1, 4, 6, 7, 6, 0, 7, 3, 3, 6, 5, 5, 0, 9, 6, 0, 4, 4, 1, 9, 3, 3, 3, 3, 6, 6, 5, 5, 5, 2, 4, 3, 1, 2, 6, 9
Offset: 1

Views

Author

Terry D. Grant, Jun 29 2018

Keywords

Comments

The continued fraction of this number is the same as that of exp(1), except that a(3n) of the continued fraction of this number is the sequence of odd numbers, 2n+1, rather than the sequence of even numbers, 2n.

Examples

			2.77980607915035691390296218455... = 2 + 1/(1 + 1/(3 + 1/(1 + 1/(1 + 1/(5 + ...)))))
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(BesselI[0, 1/2] - BesselI[1, 1/2])/(BesselI[0, 1/2] - 3 BesselI[1, 1/2]), 10, 70][[1]]
  • PARI
    (besseli(0, 1/2)-besseli(1, 1/2))/(besseli(0, 1/2)-3*besseli(1, 1/2)) \\ Felix Fröhlich, Jul 07 2018
Showing 1-5 of 5 results.