cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A181051 Incorrect duplicate of A073821.

Original entry on oeis.org

4, 2, 7, 0, 3, 8, 5, 9, 0, 2, 1, 6, 7, 2, 4, 8, 7, 0, 8, 6, 1, 4, 0, 4, 7, 3, 1, 0, 3, 9, 5, 6, 4, 0, 1, 4, 6, 1, 4, 1, 5, 1, 9, 7, 0, 6, 8, 6, 5, 1, 8, 2, 7
Offset: 0

Views

Author

Jonathan D. B. Hodgson, Oct 01 2010

Keywords

Comments

Previous name was: Decimal expansion of the constant whose continued fraction representation is [0; 2, 4, 6, 8, ..., 2*n, ...], i.e., 2/(4+6/(8+10/(12+...) using every even integer.

Examples

			0.42703859021672487086140473103956401461415197068651827...
		

A073747 Decimal expansion of coth(1).

Original entry on oeis.org

1, 3, 1, 3, 0, 3, 5, 2, 8, 5, 4, 9, 9, 3, 3, 1, 3, 0, 3, 6, 3, 6, 1, 6, 1, 2, 4, 6, 9, 3, 0, 8, 4, 7, 8, 3, 2, 9, 1, 2, 0, 1, 3, 9, 4, 1, 2, 4, 0, 4, 5, 2, 6, 5, 5, 5, 4, 3, 1, 5, 2, 9, 6, 7, 5, 6, 7, 0, 8, 4, 2, 7, 0, 4, 6, 1, 8, 7, 4, 3, 8, 2, 6, 7, 4, 6, 7, 9, 2, 4, 1, 4, 8, 0, 8, 5, 6, 3, 0, 2, 9, 4, 6, 7, 9
Offset: 1

Views

Author

Rick L. Shepherd, Aug 07 2002

Keywords

Comments

coth(x) = (e^x + e^(-x))/(e^x - e^(-x)).
Because the continued fraction for coth(1) is all positive odd numbers in sequence, the second Mathematica program below also generates the sequence. - Harvey P. Dale, Oct 15 2011
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019

Examples

			1.31303528549933130363616124693...
		

References

  • Samuel M. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.

Crossrefs

Cf. A005408 (continued fraction: odd numbers), A073821 (continued fraction exp. is even numbers), A073744 (tanh(1)=1/A073747), A073742 (sinh(1)), A073743 (cosh(1)), A073745 (csch(1)), A073746 (sech(1)), A349004.

Programs

  • Mathematica
    RealDigits[Coth[1],10,120][[1]] (* or *) RealDigits[ FromContinuedFraction[ Range[1,1001,2]],10,120][[1]] (* Harvey P. Dale, Oct 15 2011 *) (* see Comments, above, for the second program *)
  • PARI
    1/tanh(1)

Formula

Equals 1 + Sum_{n>=1} (2^(2*n)*B(2*n))/(2*n)! = 1 + Sum_{n>=1} (-1)^(n+1)*2*(A046988(n+1) / A002432(n+1)). - Terry D. Grant, May 30 2017
Equals 1 + BesselI(3/2, 1)/BesselI(1/2, 1). - Terry D. Grant, Jun 18 2018
Equals 1 + Sum_{k>=1} csch(2^k) (Ohtsuka, 2015; Stenger, 2017). - Amiram Eldar, Oct 04 2021

A298242 Decimal expansion of BesselI(1,1/2)/BesselI(0,1/2).

Original entry on oeis.org

2, 4, 2, 4, 9, 9, 6, 1, 2, 5, 8, 0, 8, 0, 1, 9, 4, 5, 3, 5, 0, 7, 0, 2, 3, 5, 3, 5, 0, 3, 6, 3, 5, 4, 0, 7, 4, 1, 2, 2, 6, 6, 0, 4, 4, 8, 6, 5, 9, 4, 5, 5, 9, 6, 6, 7, 2, 5, 5, 8, 9, 4, 4, 7, 5, 6, 3, 9, 4, 6, 3, 3, 9, 8, 1, 3, 8, 3, 1, 0, 5, 8, 2, 6, 0, 3, 1, 7, 1, 1, 5, 1, 4, 4, 6, 7, 5, 1, 1, 0, 1, 2, 7, 6, 7, 9, 8, 5, 0, 7
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2018

Keywords

Examples

			0.2424996125808019453507023535036354074122660448659455966...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselI[1, 1/2]/BesselI[0, 1/2], 10, 110] [[1]]
    RealDigits[Hypergeometric0F1[2, (1/2)^2/4]/(4 Gamma[2] Hypergeometric0F1[1, (1/2)^2/4]), 10, 110][[1]]
  • PARI
    besseli(1,1/2)/besseli(0,1/2) \\ Michel Marcus, Jul 03 2018

Formula

Equals 1/(4 + 1/(8 + 1/(12 + 1/(16 + 1/(20 + 1/(24 + ...)))))).

A298241 Decimal expansion of BesselI(1,2/3)/BesselI(0,2/3).

Original entry on oeis.org

3, 1, 6, 0, 8, 9, 2, 4, 1, 2, 6, 8, 2, 2, 1, 1, 8, 4, 0, 9, 5, 6, 0, 1, 6, 9, 1, 7, 1, 0, 5, 1, 8, 1, 1, 4, 7, 6, 6, 8, 6, 2, 9, 2, 7, 0, 0, 7, 0, 4, 1, 8, 2, 0, 7, 3, 9, 5, 4, 0, 0, 7, 3, 4, 7, 3, 2, 4, 1, 1, 6, 1, 8, 0, 4, 2, 7, 3, 5, 5, 9, 1, 8, 9, 8, 6, 6, 0, 7, 2, 1, 6, 4, 3, 9, 0, 0, 6, 6, 3, 3, 8, 1, 2, 7, 3, 8, 2, 3, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2018

Keywords

Examples

			0.3160892412682211840956016917105181147668629270070418207...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselI[1, 2/3]/BesselI[0, 2/3], 10, 110] [[1]]
    RealDigits[Hypergeometric0F1[2, (2/3)^2/4] /(3 Gamma[2] Hypergeometric0F1[1, (2/3)^2/4]), 10, 110][[1]]
  • PARI
    besseli(1,2/3)/besseli(0,2/3) \\ Michel Marcus, Jul 03 2018

Formula

Equals 1/(3 + 1/(6 + 1/(9 + 1/(12 + 1/(15 + 1/(18 + ...)))))).

A298243 Decimal expansion of BesselI(1,2/5)/BesselI(0,2/5).

Original entry on oeis.org

1, 9, 6, 1, 0, 3, 8, 1, 2, 2, 1, 7, 9, 9, 5, 5, 1, 3, 4, 0, 8, 3, 6, 1, 0, 6, 4, 6, 2, 6, 8, 7, 8, 5, 1, 7, 3, 7, 2, 5, 0, 5, 8, 0, 9, 4, 4, 6, 4, 2, 7, 0, 0, 2, 1, 1, 7, 6, 1, 7, 1, 4, 6, 5, 6, 6, 4, 7, 2, 0, 7, 2, 4, 6, 8, 6, 9, 5, 0, 7, 4, 4, 7, 5, 7, 5, 2, 4, 7, 4, 2, 7, 1, 4, 1, 2, 4, 4, 5, 3, 3, 2, 1, 3, 0, 7, 2, 0, 4, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2018

Keywords

Examples

			0.1961038122179955134083610646268785173725058094464270021...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselI[1, 2/5]/BesselI[0, 2/5], 10, 110] [[1]]
    RealDigits[Hypergeometric0F1[2, (2/5)^2/4]/(5 Gamma[2] Hypergeometric0F1[1, (2/5)^2/4]), 10, 110][[1]]
  • PARI
    besseli(1,2/5)/besseli(0,2/5) \\ Michel Marcus, Jul 03 2018

Formula

Equals 1/(5 + 1/(10 + 1/(15 + 1/(20 + 1/(25 + 1/(30 + ...)))))).

A261827 Decimal expansion of the number whose continued fraction expansion consists of the perfect numbers (A000396).

Original entry on oeis.org

6, 0, 3, 5, 7, 1, 1, 7, 1, 4, 3, 0, 6, 9, 2, 3, 3, 3, 4, 6, 2, 8, 3, 9, 9, 0, 5, 2, 9, 2, 6, 0, 9, 4, 6, 1, 8, 0, 8, 0, 6, 1, 7, 5, 7, 4, 8, 1, 3, 6, 8, 9, 5, 4, 6, 1, 0, 7, 0, 6, 6, 8, 5, 6, 8, 3, 6, 0, 6, 9, 2, 0, 3, 4, 8, 2, 2, 1, 1, 6, 6, 9, 3, 7, 3, 9, 5, 4, 6, 8, 6, 6, 3, 3, 3, 4, 2, 3, 3, 0, 5, 4, 4, 2, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 02 2015

Keywords

Examples

			6.0357117143069233346283990529260946180806175748136895461...
		

Crossrefs

Programs

  • Mathematica
    ind = {1, 2, 3, 4, 6, 7, 8, 11, 18, 24, 28, 31, 98, 111} (* from A016027 *); p = Prime@ ind; pn = (2^p - 1)(2^(p - 1)); RealDigits[ FromContinuedFraction@ pn, 10, 111][[1]] (* Robert G. Wilson v, Sep 13 2015 *)
Showing 1-6 of 6 results.