cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A036245 Numerator of fraction equal to the continued fraction [ 0, 1, 4, ..., n^2 ].

Original entry on oeis.org

1, 4, 37, 596, 14937, 538328, 26393009, 1689690904, 136891356233, 13690825314204, 1656726754374917, 238582343455302252, 40322072770700455505, 7903364845400744581232, 1778297412287938231232705, 455252040910557587940153712, 131569618120563430852935655473
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[Range[0, n]^2]], {n, 1, 20}] (* Vaclav Kotesovec, Aug 14 2021 *)
  • PARI
    A036245(n) = my(v=vector(n+1)); for(i=1, n+1, if(i==1, v[i]=0, if(i==2, v[i]=1, v[i]=(i-1)^2*v[i-1]+v[i-2]))); v[n+1] \\ Jianing Song, Nov 30 2019

Formula

a(n) = n^2 * a(n-1) + a(n-2) for n > 2. - Seiichi Manyama, Jun 05 2018
Lim_{n->oo} a(n)/A036246(n) = A073824. - Jianing Song, Nov 30 2019
a(n) ~ c * n^(2*n + 1) / exp(2*n), where c = 6.5347337470474831902516177263695578212049901774805425962967688345920604685... - Vaclav Kotesovec, Aug 14 2021

Extensions

More terms from Seiichi Manyama, Jun 05 2018

A036246 CONTINUANT transform of squares 1, 4, 9, ...

Original entry on oeis.org

1, 5, 46, 741, 18571, 669297, 32814124, 2100773233, 170195445997, 17021645372933, 2059789285570890, 296626678767581093, 50131968501006775607, 9826162452876095600065, 2210936683865622516790232, 566009617232052240393899457, 163578990316746963096353733305
Offset: 1

Views

Author

Keywords

Comments

Denominator of fraction equal to the continued fraction [ 0, 1, 4, ...n^2 ].

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<0, 0,
          `if`(n=0, 1, n^2 *a(n-1) +a(n-2)))
        end:
    seq(a(n), n=1..20);  # Alois P. Heinz, Aug 06 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[Range[0,n]^2]],{n,20}] (* Harvey P. Dale, Jul 16 2017 *)
  • PARI
    A036246(n) = my(v=vector(n+1)); for(i=1, n+1, if(i==1, v[i]=1, if(i==2, v[i]=1, v[i]=(i-1)^2*v[i-1]+v[i-2]))); v[n+1] \\ Jianing Song, Nov 30 2019

Formula

a(n) ~ c * n^(2*n + 1) / exp(2*n), where c = 8.1245591771139376779472290412302409841950717664641832772206241208918274428499... - Vaclav Kotesovec, Jun 05 2018
From Jianing Song, Nov 30 2019: (Start)
a(n) = n^2 * a(n-1) + a(n-2) for n > 2.
Lim_{n->oo} A036245(n)/a(n) = A073824. (End)

A309930 Decimal expansion of the constant whose continued fraction representation is the cubes [0; 1, 8, 27, 64, ...], A000578.

Original entry on oeis.org

8, 8, 9, 3, 4, 4, 0, 0, 0, 0, 3, 2, 7, 6, 2, 6, 9, 3, 6, 0, 5, 4, 9, 4, 7, 0, 6, 3, 2, 1, 2, 2, 1, 9, 8, 1, 0, 3, 5, 4, 2, 9, 2, 0, 8, 8, 6, 3, 6, 8, 0, 9, 5, 4, 5, 4, 8, 8, 8, 0, 9, 1, 4, 4, 4, 3, 0, 9, 6, 7, 6, 4, 1, 7, 6, 8, 1, 4, 9, 8, 0, 5, 6, 1, 8, 3, 4
Offset: 0

Views

Author

Daniel Hoyt, Nov 11 2019

Keywords

Examples

			0.8893440000327626936054947063212219810354292088...
		

Crossrefs

Programs

  • Mathematica
    N[FromContinuedFraction[Table[k^3, {k, 0, 1000}]], 120] (* Vaclav Kotesovec, Nov 20 2019 *)
  • PARI
    dec_exp(v)= w=contfracpnqn(v); w[1, 1]/w[2, 1]+0.
    dec_exp(vector(2000, i, (i-1)^3)) \\ Michel Marcus, Nov 19 2019; after A073824
  • Python
    import decimal
    from decimal import Decimal as D
    def constant_from_cofr(clist):
        hn0, kn0 = 0, 1
        hn1, kn1 = 1, 0
        for n in clist:
            hn2 = (n * hn1) + hn0
            kn2 = (n * kn1) + kn0
            hn0, kn0 = hn1, kn1
            hn1, kn1 = hn2, kn2
        return D(hn2)/D(kn2)
    if _name_ == "_main_":
        prec = 200
        decimal.getcontext().prec = prec
        glist = [x**3 for x in range(500)]
        print(', '.join(str(x) for x in str(constant_from_cofr(glist))[2:]))
    

A214070 Decimal expansion of the number whose continued fraction is 1, 2, 4, 8, 16, ...

Original entry on oeis.org

1, 4, 4, 5, 9, 3, 4, 6, 4, 0, 5, 1, 2, 2, 0, 2, 6, 6, 8, 1, 1, 9, 5, 5, 4, 3, 4, 0, 6, 8, 2, 6, 1, 7, 6, 8, 4, 2, 7, 0, 4, 0, 8, 8, 4, 5, 2, 0, 3, 4, 3, 8, 5, 0, 7, 9, 0, 3, 2, 6, 3, 5, 6, 0, 5, 0, 0, 6, 6, 1, 9, 0, 0, 6, 9, 1, 6, 2, 3, 2, 7, 7, 8, 9, 9, 7, 7, 7, 1, 6, 1, 8, 9, 0, 3, 9, 9, 2, 1, 4, 6, 2, 0, 4, 2
Offset: 1

Views

Author

Robert G. Wilson v, Aug 06 2012

Keywords

Comments

Essentially the same as A096641. - R. J. Mathar, Aug 10 2012

Examples

			1.4459346405122026681195543406826176842704088452034385079032635605006619006916...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ FromContinuedFraction[{1, 2^Range@ 19}], 10, 111][[1]]

Formula

From Amiram Eldar, Feb 08 2022: (Start)
Equals A096641 + 1.
Equals 1/A275614. (End)

A347052 Decimal expansion of the continued fraction 1/(1*2 + 1/(2*3 + 1/(3*4 + 1/(4*5 + 1/(5*6 + ...))))).

Original entry on oeis.org

4, 6, 2, 0, 2, 3, 3, 2, 5, 0, 8, 0, 2, 3, 8, 6, 1, 8, 5, 0, 3, 5, 5, 9, 1, 4, 9, 4, 1, 7, 5, 7, 1, 9, 1, 5, 9, 7, 7, 0, 3, 0, 2, 3, 9, 4, 2, 0, 4, 4, 7, 4, 7, 3, 8, 5, 0, 3, 9, 3, 2, 6, 6, 0, 3, 5, 6, 0, 7, 7, 8, 9, 8, 1, 5, 2, 4, 1, 3, 0, 8, 3, 7, 2, 9, 8, 4, 1, 1, 0, 8, 2, 1, 2, 5, 5, 5, 4, 3, 3, 5, 6, 3, 7, 8, 9
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 13 2021

Keywords

Examples

			0.46202332508023861850355914941757191597703...
		

Crossrefs

Programs

  • Mathematica
    terms=106; RealDigits[ContinuedFractionK[k(k+1),{k,terms}],10,terms][[1]] (* Stefano Spezia, Aug 23 2025 *)

Formula

Equals lim_{n -> oo} A346960(n)/A347051(n).

A365052 Decimal expansion of continued fraction [1; 4, 9, 16, 25, ... n^2, ... ].

Original entry on oeis.org

1, 2, 4, 3, 2, 8, 8, 4, 7, 8, 3, 9, 9, 7, 1, 5, 6, 4, 4, 0, 8, 2, 4, 9, 6, 5, 4, 5, 3, 9, 4, 4, 2, 9, 4, 9, 9, 2, 3, 1, 2, 0, 0, 2, 6, 1, 1, 9, 7, 4, 4, 6, 8, 8, 5, 0, 6, 6, 4, 9, 7, 4, 5, 9, 8, 8, 1, 6, 3, 0, 3, 2, 2, 3, 3, 8, 2, 5, 3, 4, 2, 1, 4, 5, 9, 6, 4, 9, 8, 1, 5, 6, 1, 2, 1, 8, 5, 5, 9, 5
Offset: 1

Views

Author

Rok Cestnik, Aug 18 2023

Keywords

Examples

			1.243288478399715644...
		

Crossrefs

Cf. A073824 (reciprocal), A036246/A036245 (convergents).

Programs

  • Mathematica
    A365052 = RealDigits[FromContinuedFraction[Range[1,50]^2],10,#][[1]]&;
  • PARI
    p(N) = my(m=contfracpnqn(vector(N, i, i^2))); m[1,1]/m[2,1];
    A365052(N) = {my(t=2); while(floor(10^N*p(t)) != floor(10^N*p(t+1)), t++); digits(floor(10^(N-1)*p(t)))};

Formula

Equals 1/A073824.

A261827 Decimal expansion of the number whose continued fraction expansion consists of the perfect numbers (A000396).

Original entry on oeis.org

6, 0, 3, 5, 7, 1, 1, 7, 1, 4, 3, 0, 6, 9, 2, 3, 3, 3, 4, 6, 2, 8, 3, 9, 9, 0, 5, 2, 9, 2, 6, 0, 9, 4, 6, 1, 8, 0, 8, 0, 6, 1, 7, 5, 7, 4, 8, 1, 3, 6, 8, 9, 5, 4, 6, 1, 0, 7, 0, 6, 6, 8, 5, 6, 8, 3, 6, 0, 6, 9, 2, 0, 3, 4, 8, 2, 2, 1, 1, 6, 6, 9, 3, 7, 3, 9, 5, 4, 6, 8, 6, 6, 3, 3, 3, 4, 2, 3, 3, 0, 5, 4, 4, 2, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 02 2015

Keywords

Examples

			6.0357117143069233346283990529260946180806175748136895461...
		

Crossrefs

Programs

  • Mathematica
    ind = {1, 2, 3, 4, 6, 7, 8, 11, 18, 24, 28, 31, 98, 111} (* from A016027 *); p = Prime@ ind; pn = (2^p - 1)(2^(p - 1)); RealDigits[ FromContinuedFraction@ pn, 10, 111][[1]] (* Robert G. Wilson v, Sep 13 2015 *)

A329810 Decimal expansion of the constant whose continued fraction representation is [0; 1, 3, 7, 15, 31, ...] = A000225 (the Mersenne numbers).

Original entry on oeis.org

7, 5, 8, 5, 4, 2, 3, 0, 8, 1, 7, 1, 0, 5, 5, 7, 3, 9, 2, 6, 8, 1, 2, 6, 0, 4, 8, 8, 4, 2, 2, 4, 8, 8, 9, 3, 4, 2, 1, 2, 4, 7, 7, 7, 9, 7, 9, 6, 9, 5, 2, 8, 6, 0, 2, 9, 9, 5, 5, 2, 3, 9, 4, 0, 3, 1, 9, 0, 9, 5, 3, 5, 0, 9, 0, 9, 4, 0, 6, 7, 2, 3, 0, 8, 5, 9, 8
Offset: 0

Views

Author

Daniel Hoyt, Nov 21 2019

Keywords

Comments

Since Mersenne numbers of the form 2^x - 1 consist entirely of 1's when written in binary, this continued fraction is nothing but 1's if written in binary.
Binary continued fraction: 1/(1+1/(11+1/(111+1/(1111+1/(11111+1/(111111+1/...

Examples

			0.758542308171055739268126048842248893421247779...
		

Crossrefs

Programs

  • Mathematica
    N[FromContinuedFraction[Table[2^k - 1, {k, 0, 100}]], 120] (* Vaclav Kotesovec, Nov 21 2019 *)
  • PARI
    dec_exp(v)= w=contfracpnqn(v); w[1, 1]/w[2, 1]+0.
    dec_exp(vector(200, i, 2^(i-1)-1)) \\ Michel Marcus, Nov 21 2019

A330156 Decimal expansion of the continued fraction expansion [1; 1/2, 1/3, 1/4, 1/5, 1/6, ...].

Original entry on oeis.org

1, 7, 5, 1, 9, 3, 8, 3, 9, 3, 8, 8, 4, 1, 0, 8, 6, 6, 1, 2, 0, 3, 9, 0, 9, 7, 0, 1, 5, 1, 1, 4, 5, 3, 8, 7, 9, 2, 5, 0, 3, 9, 8, 0, 0, 6, 8, 0, 5, 7, 4, 1, 5, 6, 3, 6, 4, 0, 4, 7, 0, 9, 5, 0, 1, 3, 9, 9, 8, 2, 8, 8, 7, 0, 4, 3, 7, 1, 0, 9, 9, 5, 1, 3, 4, 5, 1
Offset: 1

Views

Author

Daniel Hoyt, Dec 03 2019

Keywords

Comments

This constant is formed from the continued fraction [1; 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, ...] the reciprocals of the positive integers, A000027.

Examples

			1.7519383938841086612039097015114538792503980068057415636404709501399828870437...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.4, p. 23.

Crossrefs

Programs

  • Mathematica
    First[RealDigits[2/(Pi - 2), 10, 100]] (* Paolo Xausa, Apr 27 2024 *)
  • PARI
    2 / (Pi - 2) \\ Michel Marcus, Dec 05 2019
    
  • PARI
    1/atan(cotan(1)) \\ Daniel Hoyt, Apr 11 2020

Formula

Equals 2 / (Pi - 2).
Equals 1/arctan(cot(1)). - Daniel Hoyt, Apr 11 2020
From Stefano Spezia, Oct 26 2024: (Start)
2/(Pi - 2) = 1 + K_{n>=1} n*(n+1)/1, where K is the Gauss notation for an infinite continued fraction. In the expanded form, 2/(Pi - 2) = 1 + 1*2/(1 + 2*3/(1 + 3*4/(1 + 4*5/(1 + 5*6/(1 + ...))))) (see Finch at p. 23).
2/(Pi - 2) = Sum_{n>=1} (2/Pi)^n (see Shamos). (End)
Equals A309091/2. - Hugo Pfoertner, Oct 28 2024
Showing 1-9 of 9 results.