cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A070910 Decimal expansion of BesselI(0,2).

Original entry on oeis.org

2, 2, 7, 9, 5, 8, 5, 3, 0, 2, 3, 3, 6, 0, 6, 7, 2, 6, 7, 4, 3, 7, 2, 0, 4, 4, 4, 0, 8, 1, 1, 5, 3, 3, 3, 5, 3, 2, 8, 5, 8, 4, 1, 1, 0, 2, 7, 8, 5, 4, 5, 9, 0, 5, 4, 0, 7, 0, 8, 3, 9, 7, 5, 1, 6, 6, 4, 3, 0, 5, 3, 4, 3, 2, 3, 2, 6, 7, 6, 3, 4, 2, 7, 2, 9, 5, 1, 7, 0, 8, 8, 5, 5, 6, 4, 8, 5, 8, 9, 8, 9, 8, 4, 5, 9
Offset: 1

Views

Author

Benoit Cloitre, May 20 2002

Keywords

Examples

			2.2795853023360672674372044408115333532858411...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, equation 2:5:5 at page 20.

Crossrefs

Cf. A096789, A070913 (continued fraction), A006040.
Bessel function values: A334380 (J(0,1)), A334383 (J(0,sqrt(2))), A091681 (J(0,2)), A197036 (I(0,1)), A334381 (I(0,sqrt(2))), this sequence (I(0,2)).

Programs

  • Mathematica
    RealDigits[ BesselI[0, 2], 10, 110] [[1]] (* Robert G. Wilson v, Jul 09 2004 *)
    (* Or *) RealDigits[ Sum[ 1/(n!n!), {n, 0, Infinity}], 10, 110][[1]]
  • PARI
    besseli(0,2) \\ Charles R Greathouse IV, Feb 19 2014

Formula

Equals Sum_{k>=0} 1/k!^2.
From Peter Bala, Aug 19 2013: (Start)
Continued fraction expansion: 1/(1 - 1/(2 - 1/(5 - 4/(10 - 9/(17 - ... - (n-1)^2/(n^2+1 - ...)))))). See A006040. Cf. A096789.
This continued fraction is the particular case k = 0 of the result BesselI(k,2) = Sum_{n = 0..oo} 1/(n!*(n+k)!) = 1/(k! - k!/((k+2) - (k+1)/((2*k+5) - 2*(k+2)/((3*k+10) - ... - n*(n+k)/(((n+1)*(n+k+1)+1) - ...))))). See the remarks in A099597 for a sketch of the proof. (End)
From Amiram Eldar, May 29 2021: (Start)
Equals (1/e^2) * Sum_{k>=0} binomial(2*k,k)/k! = e^2 * Sum_{k>=0} (-1)^k*binomial(2*k,k)/k!.
Equal (1/(2*Pi)) * Integral_{x=0..2*Pi} exp(2*sin(x)) dx. (End)
Equals BesselJ(0,2*i). - Jianing Song, Sep 18 2021

A091681 Decimal expansion of BesselJ(0,2).

Original entry on oeis.org

2, 2, 3, 8, 9, 0, 7, 7, 9, 1, 4, 1, 2, 3, 5, 6, 6, 8, 0, 5, 1, 8, 2, 7, 4, 5, 4, 6, 4, 9, 9, 4, 8, 6, 2, 5, 8, 2, 5, 1, 5, 4, 4, 8, 2, 2, 1, 8, 6, 0, 7, 6, 0, 3, 1, 2, 8, 3, 4, 9, 7, 0, 6, 0, 1, 0, 8, 5, 3, 9, 5, 7, 7, 6, 8, 0, 1, 0, 7, 0, 5, 0, 1, 4, 8, 1, 1, 5, 1, 1, 8, 5, 3, 4, 2, 9, 3, 6, 6, 0, 4, 9
Offset: 0

Views

Author

Eric W. Weisstein, Jan 28 2004

Keywords

Comments

The Pierce Expansion of this number is the squares > 1: 4,9,16,25,... - Franklin T. Adams-Watters, May 22 2006

Examples

			0.223890779...
		

Crossrefs

Bessel function values: A334380 (J(0,1)), A334383 (J(0,sqrt(2))), this sequence (J(0,2)), A197036 (I(0,1)), A334381 (I(0,sqrt(2))), A070910 (I(0,2)).

Programs

Formula

Equals Sum_{k>=0} (-1)^k/(k!)^2.
Continued fraction expansion: BesselJ(0,2) = 1/(4 + 4/(8 + 9/(15 + ... + (n - 1)^2/(n^2 + 1 + ...)))). See A073701 for a proof. - Peter Bala, Feb 01 2015
Equals BesselI(0,2*i), where BesselI is the modified Bessel function of order 0. - Jianing Song, Sep 18 2021

A197036 Decimal expansion of the Modified Bessel Function I of order 0 at 1.

Original entry on oeis.org

1, 2, 6, 6, 0, 6, 5, 8, 7, 7, 7, 5, 2, 0, 0, 8, 3, 3, 5, 5, 9, 8, 2, 4, 4, 6, 2, 5, 2, 1, 4, 7, 1, 7, 5, 3, 7, 6, 0, 7, 6, 7, 0, 3, 1, 1, 3, 5, 4, 9, 6, 2, 2, 0, 6, 8, 0, 8, 1, 3, 5, 3, 3, 1, 2, 1, 3, 5, 7, 5, 0, 1, 6, 1, 2, 2, 7, 7, 5, 4, 7, 0, 3, 9, 4, 8, 1, 8, 3, 5, 7, 1, 4, 7, 2, 8, 0, 1, 0, 1, 8, 7, 1, 0, 3, 6, 1, 3, 4, 6, 8
Offset: 1

Views

Author

R. J. Mathar, Oct 08 2011

Keywords

Examples

			1.26606587775200833559824462521471753760767031135496...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 51, page 504.

Crossrefs

Bessel function values: A334380 (J(0,1)), A334383 (J(0,sqrt(2))), A091681 (J(0,2)), this sequence (I(0,1)), A334381 (I(0,sqrt(2))), A070910 (I(0,2)).

Programs

Formula

I_0(1) = Sum_{k>=0} 1/(4^k*k!^2) = Sum_{k>=0} 1/A002454(k).
Equals (1/Pi)*Integral_{t=0..Pi} exp(cos(t)) dt.
Equals BesselJ(0,i). - Jianing Song, Sep 18 2021
From Amiram Eldar, Jul 09 2023: (Start)
Equals exp(-1) * Sum_{k>=0} binomial(2*k,k)/(2^k*k!).
Equals e * Sum_{k>=0} (-1/2)^k * binomial(2*k,k)/k!. (End)

A334380 Decimal expansion of Sum_{k>=0} (-1)^k/((2*k)!!)^2.

Original entry on oeis.org

7, 6, 5, 1, 9, 7, 6, 8, 6, 5, 5, 7, 9, 6, 6, 5, 5, 1, 4, 4, 9, 7, 1, 7, 5, 2, 6, 1, 0, 2, 6, 6, 3, 2, 2, 0, 9, 0, 9, 2, 7, 4, 2, 8, 9, 7, 5, 5, 3, 2, 5, 2, 4, 1, 8, 6, 1, 5, 4, 7, 5, 4, 9, 1, 1, 9, 2, 7, 8, 9, 1, 2, 2, 1, 5, 2, 7, 2, 4, 4, 0, 1, 6, 7, 1, 8, 0, 6, 0, 0, 0, 9, 8, 9, 1, 5, 6, 3, 3, 9, 7, 4, 9, 2, 9, 2, 5, 9, 8, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 25 2020

Keywords

Comments

This constant is transcendental.

Examples

			1/(4^0*0!^2) - 1/(4^1*1!^2) + 1/(4^2*2!^2) - 1/(4^3*3!^2) + ... = 0.765197686557966551449717526...
		

Crossrefs

Bessel function values: this sequence (J(0,1)), A334383 (J(0,sqrt(2))), A091681 (J(0,2)), A197036 (I(0,1)), A334381 (I(0,sqrt(2))), A070910 (I(0,2)).

Programs

  • Mathematica
    RealDigits[BesselJ[0, 1], 10, 110] [[1]]
  • PARI
    besselj(0, 1) \\ Michel Marcus, Apr 26 2020

Formula

Equals BesselJ(0,1).
Equals BesselI(0,i), where BesselI is the modified Bessel function of order 0. - Jianing Song, Sep 18 2021

A334381 Decimal expansion of Sum_{k>=0} 1/(2^k*(k!)^2).

Original entry on oeis.org

1, 5, 6, 6, 0, 8, 2, 9, 2, 9, 7, 5, 6, 3, 5, 0, 5, 3, 7, 2, 9, 2, 3, 8, 6, 9, 1, 2, 6, 9, 2, 7, 7, 1, 7, 8, 8, 7, 1, 5, 8, 8, 2, 5, 3, 9, 8, 0, 2, 6, 9, 7, 0, 7, 5, 2, 7, 4, 3, 3, 8, 8, 2, 1, 1, 8, 2, 0, 4, 0, 2, 5, 8, 3, 8, 2, 3, 4, 9, 8, 5, 0, 9, 0, 8, 5, 8, 8, 9, 3, 8, 8, 3, 3, 8, 7, 0, 9, 9, 2, 4, 0, 9, 3, 1, 9, 7, 8, 3, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 25 2020

Keywords

Examples

			1/(2^0*0!^2) + 1/(2^1*1!^2) + 1/(2^2*2!^2) + 1/(2^3*3!^2) + ... = 1.56608292975635053729238691...
		

Crossrefs

Bessel function values: A334380 (J(0,1)), A334383 (J(0,sqrt(2))), A091681 (J(0,2)), A197036 (I(0,1)), this sequence (I(0,sqrt(2))), A070910 (I(0,2)).

Programs

  • Mathematica
    RealDigits[BesselI[0, Sqrt[2]], 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/(2^k*(k!)^2)) \\ Michel Marcus, Apr 26 2020
    
  • PARI
    besseli(0, sqrt(2)) \\ Michel Marcus, Apr 26 2020

Formula

Equals BesselI(0,sqrt(2)).
Equals BesselJ(0,sqrt(2)*i). - Jianing Song, Sep 18 2021

A055546 a(n) = (-1)^(n+1) * 2^n * n!^2.

Original entry on oeis.org

-1, 2, -16, 288, -9216, 460800, -33177600, 3251404800, -416179814400, 67421129932800, -13484225986560000, 3263182688747520000, -939796614359285760000, 317651255653438586880000, -124519292216147926056960000, 56033681497266566725632000000
Offset: 0

Views

Author

Keywords

Comments

Coefficient of the Cayley-Menger determinant of order n.
A roller coaster has n rows of seats, each of which has room for two people. |a(n)| is the number of ways n men and n women can be seated with a man and a woman in each row. - Geoffrey Critzer, Dec 17 2011
The o.g.f. of 1/a(n) is -BesselI(0,i*sqrt(2*x)), with i the imaginary unit. See Abramowitz-Stegun (reference and link under A008277), p. 375, 9.6.10. - Wolfdieter Lang, Jan 10 2012
|a(n)|/2 is the number of integers k such that the digits of k and 2*k, written in base 2*n, are permutations of 0, 1, ..., 2*n-1. - Yifan Xie, Apr 12 2025

Crossrefs

Row of A340591 (in absolute values).

Programs

  • Mathematica
    Table[(-1)^(n+1)2^n n!^2, {n, 0, 20}]
  • PARI
    a(n)={(-1)^(n+1) * 2^n * n!^2} \\ Andrew Howroyd, Nov 07 2019

Formula

E.g.f.: -arcsinh(x/sqrt(2))^2. - Vladeta Jovovic, Aug 30 2004
Sum_{n>=0} |a(n)|/(2*n+1)! = Pi/2. - Daniel Suteu, Feb 06 2017
a(n) = (-1)^(n+1) * A000079(n) * A001044(n). - Terry D. Grant, May 21 2017
From Amiram Eldar, Nov 18 2020: (Start)
Sum_{n>=0} 1/a(n) = (-1) * A334383.
Sum_{n>=0} (-1)^(n+1)/a(n) = A334381. (End)

Extensions

Terms a(14) and beyond from Andrew Howroyd, Nov 07 2019

A348607 Decimal expansion of BesselJ(1,2).

Original entry on oeis.org

5, 7, 6, 7, 2, 4, 8, 0, 7, 7, 5, 6, 8, 7, 3, 3, 8, 7, 2, 0, 2, 4, 4, 8, 2, 4, 2, 2, 6, 9, 1, 3, 7, 0, 8, 6, 9, 2, 0, 3, 0, 2, 6, 8, 9, 7, 1, 9, 6, 7, 5, 4, 4, 0, 1, 2, 1, 1, 3, 9, 0, 2, 0, 7, 6, 4, 0, 8, 7, 1, 1, 6, 2, 8, 9, 6, 1, 2, 1, 8, 4, 9, 4, 8, 3, 9, 9
Offset: 0

Views

Author

Dumitru Damian, Oct 25 2021

Keywords

Examples

			0.5767248077568733872...
		

Crossrefs

Bessel function values: A334380 (J(0,1)), A091681 (J(0,2)), A334383 (J(0,sqrt(2))), this sequence (J(1,2)), A197036 (I(0,1)), A070910 (I(0,2)), A334381 (I(0,sqrt(2))), A096789 (I(1,2)).

Programs

  • Mathematica
    RealDigits[BesselJ[1, 2], 10, 100][[1]] (* Amiram Eldar, Oct 25 2021 *)
  • PARI
    besselj(1, 2) \\ Michel Marcus, Oct 25 2021
  • Sage
    bessel_J(1, 2).n(digits=100)
    

Formula

Equals Sum_{k>=0} (-1)^k/(k!*(k+1)!).

A367730 Decimal expansion of BesselJ(0,2/sqrt(3)).

Original entry on oeis.org

6, 9, 3, 4, 3, 6, 7, 8, 8, 1, 7, 9, 1, 8, 3, 1, 9, 0, 0, 9, 7, 7, 6, 0, 4, 6, 3, 3, 3, 3, 5, 4, 3, 9, 3, 1, 9, 7, 3, 2, 0, 9, 9, 5, 6, 2, 5, 3, 8, 6, 6, 5, 5, 5, 0, 9, 3, 4, 4, 4, 6, 5, 8, 3, 6, 6, 9, 3, 2, 6, 0, 3, 5, 4, 9, 3, 3, 5, 5, 6, 4, 1, 2, 9, 9, 8, 2, 1, 2, 7, 3, 0, 3, 2, 9, 0, 1, 6, 3
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2023

Keywords

Examples

			0.69343678817918319009776046333354393...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselJ[0, 2/Sqrt[3]], 10, 99][[1]]
  • PARI
    besselj(0,2/sqrt(3)) \\ Michel Marcus, Nov 29 2023

Formula

Equals Sum_{k>=0} 1 / ((-3)^k * k!^2).

A385453 Decimal expansion of 6*Sum_{k>=0} (-1)^k/(k! (k + 3)! 2^k).

Original entry on oeis.org

8, 8, 1, 0, 7, 9, 4, 5, 0, 6, 9, 1, 0, 9, 2, 1, 8, 9, 8, 9, 0, 5, 3, 7, 0, 0, 5, 8, 6, 7, 8, 5, 7, 9, 4, 9, 3, 9, 7, 4, 9, 2, 0, 9, 3, 1, 6, 4, 8, 1, 2, 7, 0, 3, 3, 7, 5, 4, 5, 0, 0, 7, 7, 3, 5, 3, 0, 0, 0, 1, 3, 6, 1, 8, 6, 3, 2, 1, 9, 7, 8, 8, 3, 5, 8, 4, 6, 7, 3, 9, 3, 9, 1, 7, 9, 1, 5, 7, 4, 9, 7, 3, 1, 6, 5
Offset: 0

Views

Author

Artur Jasinski, Jun 29 2025

Keywords

Examples

			0.881079450691092189890537005867857949397...
		

Crossrefs

Cf. A334383.

Programs

  • Mathematica
    RealDigits[Hypergeometric0F1[4, -1/2], 10, 105][[1]]

Formula

Equals Hypergeometric0F1(4, -1/2).
Equals 12 * sqrt(2) * BesselJ(3, sqrt(2)).
Showing 1-9 of 9 results.