cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A334383 Decimal expansion of Sum_{k>=0} (-1)^k/(2^k*(k!)^2).

Original entry on oeis.org

5, 5, 9, 1, 3, 4, 1, 4, 4, 4, 1, 8, 9, 7, 9, 9, 1, 7, 4, 8, 8, 2, 6, 8, 4, 6, 7, 9, 1, 6, 8, 9, 6, 4, 0, 9, 8, 0, 6, 3, 6, 2, 5, 0, 4, 0, 3, 0, 9, 8, 3, 8, 6, 5, 7, 1, 5, 3, 1, 1, 7, 3, 4, 2, 1, 9, 7, 1, 7, 1, 2, 9, 2, 2, 8, 0, 2, 3, 1, 2, 6, 5, 1, 5, 7, 1, 0, 4, 4, 1, 9, 0, 2, 3, 4, 7, 2, 9, 4, 9, 4, 0, 8, 7, 4, 4, 9, 4, 4, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 25 2020

Keywords

Examples

			1/(2^0*0!^2) - 1/(2^1*1!^2) + 1/(2^2*2!^2) - 1/(2^3*3!^2) + ... = 0.5591341444189799174882684679...
		

Crossrefs

Bessel function values: A334380 (J(0,1)), this sequence (J(0,sqrt(2))), A091681 (J(0,2)), A197036 (I(0,1)), A334381 (I(0,sqrt(2))), A070910 (I(0,2)).

Programs

  • Mathematica
    RealDigits[BesselJ[0, Sqrt[2]], 10, 110] [[1]]
  • PARI
    besselj(0, sqrt(2)) \\ Michel Marcus, Apr 26 2020

Formula

Equals BesselJ(0,sqrt(2)).
Equals BesselI(0,sqrt(2)*i), where BesselI is the modified Bessel function of order 0. - Jianing Song, Sep 18 2021

A334381 Decimal expansion of Sum_{k>=0} 1/(2^k*(k!)^2).

Original entry on oeis.org

1, 5, 6, 6, 0, 8, 2, 9, 2, 9, 7, 5, 6, 3, 5, 0, 5, 3, 7, 2, 9, 2, 3, 8, 6, 9, 1, 2, 6, 9, 2, 7, 7, 1, 7, 8, 8, 7, 1, 5, 8, 8, 2, 5, 3, 9, 8, 0, 2, 6, 9, 7, 0, 7, 5, 2, 7, 4, 3, 3, 8, 8, 2, 1, 1, 8, 2, 0, 4, 0, 2, 5, 8, 3, 8, 2, 3, 4, 9, 8, 5, 0, 9, 0, 8, 5, 8, 8, 9, 3, 8, 8, 3, 3, 8, 7, 0, 9, 9, 2, 4, 0, 9, 3, 1, 9, 7, 8, 3, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 25 2020

Keywords

Examples

			1/(2^0*0!^2) + 1/(2^1*1!^2) + 1/(2^2*2!^2) + 1/(2^3*3!^2) + ... = 1.56608292975635053729238691...
		

Crossrefs

Bessel function values: A334380 (J(0,1)), A334383 (J(0,sqrt(2))), A091681 (J(0,2)), A197036 (I(0,1)), this sequence (I(0,sqrt(2))), A070910 (I(0,2)).

Programs

  • Mathematica
    RealDigits[BesselI[0, Sqrt[2]], 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/(2^k*(k!)^2)) \\ Michel Marcus, Apr 26 2020
    
  • PARI
    besseli(0, sqrt(2)) \\ Michel Marcus, Apr 26 2020

Formula

Equals BesselI(0,sqrt(2)).
Equals BesselJ(0,sqrt(2)*i). - Jianing Song, Sep 18 2021

A340591 Number A(n,k) of n*(k+1)-step k-dimensional nonnegative closed lattice walks starting at the origin and using steps that increment all components or decrement one component by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 6, 16, 5, 1, 1, 24, 288, 192, 14, 1, 1, 120, 9216, 24444, 2816, 42, 1, 1, 720, 460800, 7303104, 2738592, 46592, 132, 1, 1, 5040, 33177600, 4234233600, 8204167296, 361998432, 835584, 429, 1, 1, 40320, 3251404800, 4223111040000, 59027412643200, 11332298092032, 53414223552, 15876096, 1430, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 12 2021

Keywords

Examples

			Square array A(n,k) begins:
  1,  1,     1,         1,              1,                   1, ...
  1,  1,     2,         6,             24,                 120, ...
  1,  2,    16,       288,           9216,              460800, ...
  1,  5,   192,     24444,        7303104,          4234233600, ...
  1, 14,  2816,   2738592,     8204167296,      59027412643200, ...
  1, 42, 46592, 361998432, 11332298092032, 1052109889288796160, ...
		

Crossrefs

Columns k=0-3 give: A000012, A000108, A006335, A340540.
Rows n=0-2 give: A000012, A000142, |A055546|.
Main diagonal gives A340590.
Cf. A335570.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, 1, (k-> add(
         `if`(l[i]>0, b(n-1, sort(subsop(i=l[i]-1, l))), 0), i=1..k)+
         `if`(add(i, i=l)+k x+1, l)), 0))(nops(l)))
        end:
    A:= (n, k)-> b(k*n+n, [0$k]):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, 1, Function[k, Sum[
      If[l[[i]]>0, b[n-1, Sort[ReplacePart[l, i -> l[[i]]-1]]], 0], {i, 1, k}]+
      If[Sum[i, {i, l}] + k < n, b[n - 1, Map[#+1&, l]], 0]][Length[l]]];
    A[n_, k_] := b[k*n + n, Table[0, {k}]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jan 26 2021, after Alois P. Heinz *)

A088386 a(n) = 2^n*(n!)^3.

Original entry on oeis.org

1, 2, 32, 1728, 221184, 55296000, 23887872000, 16387080192000, 16780370116608000, 24465779630014464000, 48931559260028928000000, 130255810750197006336000000, 450164081952680853897216000000, 1978020976100079672024367104000000, 10855379116837237240069726666752000000
Offset: 0

Views

Author

Cino Hilliard, Nov 08 2003

Keywords

Comments

A010050(n) / a(n) is the probability that there will be no intersections among n rays in the plane with endpoints chosen randomly, uniformly, and independently on a given line segment and angles chosen randomly, uniformly, and independently in [0, 2*Pi). - Jason Zimba, Apr 03 2022

Crossrefs

Programs

  • Magma
    [2^n*Factorial(n)^3: n in [0..20]]; // G. C. Greubel, Dec 12 2022
    
  • Mathematica
    Table[2^n*(n!)^3, {n,0,20}] (* G. C. Greubel, Dec 12 2022 *)
  • PARI
    for(n=0,20,print1(2^n*(n!)^3, ", "));
    
  • SageMath
    [2^n*factorial(n)^3 for n in range(21)] # G. C. Greubel, Dec 12 2022

Formula

a(0) = 1; a(n) = 2*n^3*a(n-1) for n >= 1. - Georg Fischer, May 23 2021

Extensions

Offset corrected from 1 to 0 and definition changed by Georg Fischer, May 23 2021

A092170 Sum of squares of alternating factorials : n!^2 - (n-1)!^2 + (n-2)!^2 - ... 1!^2.

Original entry on oeis.org

1, 3, 33, 543, 13857, 504543, 24897057, 1600805343, 130081089057, 13038108350943, 1580312813889057, 227862219988670943, 38547925823643969057, 7561506530728353470943, 1702450746193471070529057
Offset: 1

Views

Author

Christer Mauritz Blomqvist (MauritzTortoise(AT)hotmail.com), Apr 01 2004

Keywords

Comments

The height of a regular simplex (hypertetrahedron) of dimension n and with unit length edges will be h(n)=sqrt(a(n))/n!. The contents (hypervolume) will then be V(n)=V(n-1)*h(n)/n where V(1)=1.

Examples

			a(3)=3!^2-a(2)=36-a(2);
a(2)=2!^2-a(1)=4-a(1)=3-1=3 ->
a(3)=36-3=33.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^j*((n - j)!)^2, {j, 0, n - 1}]
    Module[{nn=20,fctrls}, fctrls=(Range[nn]!)^2;Table[Total[Times@@@ Partition[ Riffle[Reverse[Take[fctrls,n]],{1,-1},{2,-1,2}],2]], {n, nn}]] (* Harvey P. Dale, Aug 21 2016 *)

Formula

a(n) = n!^2 - a(n-1), a(1)=1. - Charles R Greathouse IV, Oct 13 2004

A269943 Triangle read by rows, T(n,k) = ((-1)^k*(2*n)!/4^k)*P[n,k](1/((2*n-1)*(2*n))) where P is the inverse P-transform, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 6, 0, 16, 60, 90, 0, 288, 1176, 2520, 2520, 0, 9216, 39360, 98280, 151200, 113400, 0, 460800, 2023296, 5504400, 10311840, 12474000, 7484400, 0, 33177600, 148442112, 426666240, 896575680, 1362160800, 1362160800, 681080400
Offset: 0

Views

Author

Peter Luschny, Mar 27 2016

Keywords

Comments

The P-transform is defined in the link. Compare also the Sage implementation below.

Examples

			Triangle starts:
[1]
[0, 1]
[0, 2, 6]
[0, 16, 60, 90]
[0, 288, 1176, 2520, 2520]
[0, 9216, 39360, 98280, 151200, 113400]
[0, 460800, 2023296, 5504400, 10311840, 12474000, 7484400]
		

Crossrefs

Programs

  • Sage
    # uses[PtransMatrix from A269941]
    eul = lambda n: 1/((2*n-1)*(2*n))
    norm = lambda n,k: (-1)^k*factorial(2*n)/4^k
    PtransMatrix(7, eul, norm, inverse=True)

Formula

T(n,1) = 2^(n-1)*(n-1)!^2 (cf. A055546) for n>=1.
T(n,n) = (2*n)!/2^n = A000680(n).
Showing 1-6 of 6 results.