cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A134372 a(n) = ((2n)!)^2.

Original entry on oeis.org

1, 4, 576, 518400, 1625702400, 13168189440000, 229442532802560000, 7600054456551997440000, 437763136697395052544000000, 40990389067797283140009984000000, 5919012181389927685417441689600000000
Offset: 0

Views

Author

Artur Jasinski, Oct 22 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[((2n)!)^(2), {n, 0, 10}]
    ((2*Range[0,20])!)^2 (* Harvey P. Dale, Jul 14 2011 *)
  • PARI
    a(n) = ((2*n)!)^2; \\ Michel Marcus, Nov 16 2020

Formula

From Amiram Eldar, Nov 16 2020: (Start)
Sum_{n>=0} 1/a(n) = A334379.
Sum_{n>=0} (-1)^n/a(n) = A334632. (End)

A334378 Decimal expansion of Sum_{k>=0} 1/((2*k+1)!)^2.

Original entry on oeis.org

1, 0, 2, 7, 8, 4, 7, 2, 6, 1, 5, 9, 7, 4, 1, 5, 7, 9, 9, 6, 9, 2, 6, 8, 8, 4, 9, 3, 0, 8, 0, 7, 9, 2, 3, 6, 3, 7, 3, 0, 3, 4, 3, 3, 1, 0, 2, 8, 3, 4, 2, 5, 7, 2, 5, 4, 7, 1, 2, 4, 5, 0, 2, 2, 8, 2, 6, 7, 2, 5, 6, 9, 2, 7, 3, 2, 3, 3, 2, 8, 1, 8, 8, 5, 7, 3, 5, 2, 7, 8, 8, 3, 5, 1, 5, 2, 8, 2, 6, 6, 4, 6, 7, 6, 7, 9, 2, 3, 7, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 25 2020

Keywords

Examples

			1/1!^2 + 1/3!^2 + 1/5!^2 + 1/7!^2 + ... = 1.027847261597415799692...
Continued fraction: 1 + 1/(36 - 36/(401 - 400/(1765 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (2*n*(2*n + 1))^2 for n >= 1. - _Peter Bala_, Feb 22 2024
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(BesselI[0, 2] - BesselJ[0, 2])/2, 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/((2*k+1)!)^2) \\ Michel Marcus, Apr 26 2020
    
  • PARI
    (besseli(0,2) - besselj(0,2))/2 \\ Michel Marcus, Apr 26 2020

Formula

Equals (BesselI(0,2) - BesselJ(0,2))/2.

A334632 Decimal expansion of Sum_{k>=0} (-1)^k / ((2*k)!)^2.

Original entry on oeis.org

7, 5, 1, 7, 3, 4, 1, 8, 2, 7, 1, 3, 8, 0, 8, 2, 2, 8, 5, 5, 0, 9, 9, 8, 9, 0, 1, 2, 3, 0, 7, 4, 6, 5, 7, 5, 9, 5, 9, 5, 8, 6, 5, 7, 6, 6, 0, 7, 2, 9, 2, 0, 0, 2, 7, 3, 8, 8, 4, 4, 6, 8, 4, 6, 0, 2, 9, 2, 6, 9, 4, 7, 0, 7, 7, 7, 8, 1, 9, 3, 5, 2, 5, 2, 6, 7, 4, 6, 2, 3, 4, 6, 8, 0, 8, 2, 1, 5, 1, 5, 2, 7, 3, 7, 3, 4
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 10 2020

Keywords

Examples

			0.75173418271380822855099890123074657595958657660729200273884...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 55, page 552.

Crossrefs

Cf. A334379.

Programs

  • Maple
    evalf(Sum((-1)^k/(2*k)!^2, k=0..infinity), 120);
  • Mathematica
    RealDigits[KelvinBer[0, 2], 10, 120][[1]]
    RealDigits[Re[Hypergeometric0F1Regularized[1, I]], 10, 120][[1]]
    RealDigits[HypergeometricPFQ[{}, {1/2, 1/2, 1}, -1/16], 10, 120][[1]] (* Vaclav Kotesovec, Jul 19 2021 *)
  • PARI
    sumalt(k=0, (-1)^k/(2*k)!^2)

Formula

Equals Re(BesselJ(0, 2*exp(3*Pi*i/4))).
Showing 1-3 of 3 results.