A197120 Nonsquare positive integers n such that the fundamental unit of quadratic field Q(sqrt(d))has norm -1 and minimum one from two parts of fundamental unit are not integer.
5, 13, 20, 29, 45, 52, 53, 61, 80, 85, 109, 116, 117, 125, 149, 157, 173, 180, 181, 208, 212, 229, 244, 245, 261, 277, 293, 317, 320, 325, 340, 365, 397, 405, 421, 436, 445, 461, 464, 468, 477, 493, 500, 509, 533, 541, 549, 565, 596, 605, 613, 628, 629, 637
Offset: 1
Keywords
Programs
-
Mathematica
cr = {}; Do[ If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d3 = Expand[(d1 + d2) (d1 - d2)]; If[d3 == -1, k1 = Max[Denominator[d1], Denominator[d2]]; If[k1 == 1, , AppendTo[cr, n]]]], {n, 2, 2000}]; cr
Comments