cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197132 Euler transform of composite numbers.

Original entry on oeis.org

1, 4, 16, 52, 157, 434, 1144, 2862, 6906, 16090, 36449, 80430, 173555, 366802, 761102, 1552569, 3118508, 6174461, 12064383, 23283027, 44419855, 83834278, 156626605, 289839251, 531534746, 966483534, 1743164649, 3119864511, 5543030861, 9779552117, 17139055493
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 100: # to use composites <= N
    comps:= remove(isprime,[$4..N]):
    M:= nops(comps):
    G:= mul((1-x^k)^(-comps[k]),k=1..M):
    S:= series(G, x, M+1):
    seq(coeff(S,x,j),j=0..M); # Robert Israel, Jan 30 2018
  • Mathematica
    a[ns_Integer?NonNegative, nf_Integer?NonNegative] := CoefficientList[Series[Product[(1 - x^k)^-FixedPoint[k + PrimePi[#] + 1 &, k], {k, 1, nf}], {x, 0, nf}], x][[ns + 1 ;; nf + 1]]; a[0, 30] (* Robert P. P. McKone, Nov 08 2023 *)

Formula

G.f.: Product_{k>=1} (1-x^k)^-composite(k), where composite(k) = A002808(k) is the k-th composite number.