A197132 Euler transform of composite numbers.
1, 4, 16, 52, 157, 434, 1144, 2862, 6906, 16090, 36449, 80430, 173555, 366802, 761102, 1552569, 3118508, 6174461, 12064383, 23283027, 44419855, 83834278, 156626605, 289839251, 531534746, 966483534, 1743164649, 3119864511, 5543030861, 9779552117, 17139055493
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- N. J. A. Sloane, Transforms
Programs
-
Maple
N:= 100: # to use composites <= N comps:= remove(isprime,[$4..N]): M:= nops(comps): G:= mul((1-x^k)^(-comps[k]),k=1..M): S:= series(G, x, M+1): seq(coeff(S,x,j),j=0..M); # Robert Israel, Jan 30 2018
-
Mathematica
a[ns_Integer?NonNegative, nf_Integer?NonNegative] := CoefficientList[Series[Product[(1 - x^k)^-FixedPoint[k + PrimePi[#] + 1 &, k], {k, 1, nf}], {x, 0, nf}], x][[ns + 1 ;; nf + 1]]; a[0, 30] (* Robert P. P. McKone, Nov 08 2023 *)
Formula
G.f.: Product_{k>=1} (1-x^k)^-composite(k), where composite(k) = A002808(k) is the k-th composite number.