cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197133 Decimal expansion of least x>0 having sin(x) = sin(2*x)^2.

Original entry on oeis.org

2, 7, 2, 9, 7, 1, 8, 4, 9, 2, 3, 6, 8, 2, 4, 9, 5, 0, 4, 0, 8, 6, 1, 6, 8, 0, 6, 0, 8, 3, 8, 6, 9, 8, 3, 1, 0, 4, 7, 4, 0, 6, 6, 5, 1, 9, 6, 6, 4, 4, 0, 1, 8, 2, 7, 6, 6, 8, 0, 0, 0, 1, 1, 4, 8, 4, 3, 3, 5, 9, 2, 7, 0, 1, 0, 2, 2, 0, 8, 9, 0, 4, 3, 5, 9, 2, 4, 4, 8, 6, 4, 3, 1, 9, 4, 0, 5, 6, 9, 0, 8
Offset: 0

Views

Author

Clark Kimberling, Oct 12 2011

Keywords

Comments

The Mathematica program includes a graph.
Guide for least x>0 satisfying sin(b*x) = sin(c*x)^2 for selected numbers b and c:
b.....c.......x
1.....2.......A197133
1.....3.......A197134
1.....4.......A197135
1.....5.......A197251
1.....6.......A197252
1.....7.......A197253
1.....8.......A197254
2.....1.......A105199, x=arctan(2)
2.....3.......A019679, x=Pi/12
2.....4.......A197255
2.....5.......A197256
2.....6.......A197257
2.....7.......A197258
2.....8.......A197259
3.....1.......A197260
3.....2.......A197261
3.....4.......A197262
3.....5.......A197263
3.....6.......A197264
3.....7.......A197265
3.....8.......A197266
4.....1.......A197267
4.....2.......A195693, x=arctan(1/(golden ratio))
4.....3.......A197268
1.....4*Pi....A197522
1.....3*Pi....A197571
1.....2*Pi....A197572
1.....3*Pi/2..A197573
1.....Pi......A197574
1.....Pi/2....A197575
1.....Pi/3....A197326
1.....Pi/4....A197327
1.....Pi/6....A197328
2.....Pi/3....A197329
2.....Pi/4....A197330
2.....Pi/6....A197331
3.....Pi/3....A197332
3.....Pi/6....A197375
3.....Pi/4....A197333
1.....1/2.....A197376
1.....1/3.....A197377
1.....2/3.....A197378
Pi....1.......A197576
Pi....2.......A197577
Pi....3.......A197578
2*Pi..1.......A197585
3*Pi..1.......A197586
4*Pi..1.......A197587
Pi/2..1.......A197579
Pi/2..2.......A197580
Pi/2..1/2.....A197581
Pi/3..Pi/4....A197379
Pi/3..Pi/6....A197380
Pi/4..Pi/3....A197381
Pi/4..Pi/6....A197382
Pi/6..Pi/3....A197383
Pi/6..Pi/4..........., x=1
Pi/3..1.......A197384
Pi/3..2.......A197385
Pi/3..3.......A197386
Pi/3..1/2.....A197387
Pi/3..1/3.....A197388
Pi/3..2/3.....A197389
Pi/4..1.......A197390
Pi/4..2.......A197391
Pi/4..3.......A197392
Pi/4..1/2.....A197393
Pi/4..1/3.....A197394
Pi/4..2/3.....A197411
Pi/4..1/4.....A197412
Pi/6..1.......A197413
Pi/6..2.......A197414
Pi/6..3.......A197415
Pi/6..1/2.....A197416
Pi/6..1/3.....A197417
Pi/6..2/3.....A197418
Cf. A197476 for a similar table for sin(b*x) = sin(c*x)^2.

Examples

			0.272971849236824950408616...
		

Crossrefs

Programs

  • Mathematica
    b = 1; c = 2; f[x_] := Sin[x]
    t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .1, .3}, WorkingPrecision -> 100]
    RealDigits[t] (* A197133 *)
    Plot[{f[b*x], f[c*x]^2}, {x, 0, Pi}]
    (* Second program: *)
    RealDigits[ ArcSec[ Root[16 - 16 x^2 + x^6, 3]], 10, 100] // First (* Jean-François Alcover, Feb 19 2013 *)
  • PARI
    asin(2*sin(asin(3*sqrt(3)/8)/3)/sqrt(3)) \\ Gleb Koloskov, Sep 15 2021
    
  • PARI
    asin(polrootsreal(4*x^3-4*x+1)[2]) \\ Charles R Greathouse IV, Feb 12 2025

Formula

From Gleb Koloskov, Sep 15 2021: (Start)
Equals arcsin(2*sin(arcsin(3*sqrt(3)/8)/3)/sqrt(3))
= arcsin(2*sin(arcsin(A333322)/3)/A002194). (End)

Extensions

Edited and a(99) corrected by Georg Fischer, Jul 28 2021