cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197184 Triangle of polynomial coefficients of the polynomial factors defined in A074051.

Original entry on oeis.org

1, -1, 1, -1, -1, 1, 7, -2, -1, 1, -13, 12, -3, -1, 1, -17, -22, 18, -4, -1, 1, 199, -45, -35, 25, -5, -1, 1, -605, 465, -84, -53, 33, -6, -1, 1, -225, -1449, 910, -133, -77, 42, -7, -1, 1, 11703, -864, -3094, 1594, -190, -108, 52, -8, -1, 1, -59317, 33780, -1380, -6027, 2583, -252, -147, 63, -9, -1, 1, 83143, -179398, 78567, -771, -10899, 3948, -315, -195, 75, -10, -1, 1, 991671, 271073, -461978, 159115, 2882, -18546, 5764, -374, -253, 88, -11, -1, 1
Offset: 1

Views

Author

R. J. Mathar, Oct 11 2011

Keywords

Comments

The triangle T(n,k), 0<=kA074052(n) + A074051(n)*sum_{i=1..m} (i+1)! + p_n(m) *(m+2)!.

Examples

			1;   1
-1,1;  -1+x
-1,-1,1;  -1-x+x^2
7,-2,-1,1;  7-2*x-x^2+x^3
-13,12,-3,-1,1;  -13+12*x-3*x^2-x^3+x^4
-17,-22,18,-4,-1,1;   -17-22*x+18*x^2-4*x^3-x^4+x^5
		

Formula

A074052(n) + 2*A074051(n) + 6*p_n(1) = 2. - R. J. Mathar, Oct 13 2011
(x+2)*p_n(x)-p_n(x-1) = x^n-A074051(n). - R. J. Mathar, Oct 13 2011
Conjectures on p_n(x)= sum_{k=0..n-1} T(n,k)*x^k:
T(n,n-1) = 1.
T(n,n-2) = -1.
T(n,n-3) = -(n-2).
T(n,n-4) = A055998(n-2).
T(n,n-5) = -(n-2)*(n^2-4*n+21)/6.
T(n,n-6) = (n-5)*(n-2)*(n^2-19*n-24)/24.