A197185 The Riemann primes of the psi type and index 1.
2, 59, 73, 97, 109, 113, 199, 283, 463, 467, 661, 1103, 1109, 1123, 1129, 1321, 1327, 1423, 2657, 2803, 2861, 3299, 5381, 5881, 6373, 6379, 9859, 9931, 9949, 10337, 10343, 11777, 19181, 19207, 19373, 24107, 24109, 24113, 24121, 24137, 42751, 42793, 42797
Offset: 1
Keywords
Links
- Dana Jacobsen, Table of n, a(n) for n = 1..583
- M. Planat and P. Solé, Efficient prime counting and the Chebyshev primes arXiv:1109.6489 [math.NT], 2011.
- L. Schoenfeld, Sharper bounds for the Chebyshev functions theta(x) and psi(x). II, Math. Comp. 30 (1975) 337-360.
Programs
-
Mathematica
ChebyshevPsi[n_] := Range[n] // MangoldtLambda // Total; Reap[For[max=0; p=2, p<50000, p = NextPrime[p], f = Abs[ChebyshevPsi[p]-p]; If[f > max, max = f; Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 03 2018 *)
-
Perl
use ntheory ":all"; my($max,$f)=(0); forprimes { $f=abs(chebyshev_psi($)-$); if ($f > $max) { say; $max=$f; } } 10000; # Dana Jacobsen, Dec 29 2015
Comments