A197227 Primes that are not the sum of at least two consecutive primes.
2, 3, 7, 11, 13, 19, 29, 37, 43, 47, 61, 73, 79, 89, 103, 107, 113, 137, 149, 151, 157, 163, 167, 179, 191, 193, 227, 229, 239, 241, 257, 277, 283, 293, 307, 313, 317, 337, 347, 359, 367, 383, 389, 397, 409, 419, 433, 461, 467, 509, 521, 541, 547, 557, 569
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..5000
Programs
-
Maple
P:= [seq(ithprime(i),i=1..10^3)]: S:= ListTools:-PartialSums([0,op(P)]): sort(convert(convert(P,set) minus {seq(seq(S[i]-S[j],j=1..i-2),i=1..10^3+1)},list)); # Robert Israel, May 09 2021
-
Mathematica
lim = 1000; pFound = {}; ps = Prime[Range[PrimePi[lim]]]; sm = ps; i = 0; While[i++; j = 1; While[sm[[j]] = sm[[j]] + ps[[i + j]]; sm[[j]] <= lim, If[PrimeQ[sm[[j]]], AppendTo[pFound, sm[[j]]]]; j++]; j > 1]; Complement[ps, pFound]
Formula
Prime(n) such that A307610(n) = 1. - Ray Chandler, Sep 21 2023
Extensions
Definition clarified by Jonathan Sondow, May 18 2013
Comments