A197299 The Riemann primes of the theta type and index 3.
2, 3, 5, 7, 13, 17, 23, 31, 37, 41, 43, 47, 53, 59, 67, 73, 83, 89, 101, 103, 137, 163, 167, 179, 197, 211, 223, 239, 251, 277, 331, 379, 397, 431, 463, 467, 521, 577, 593, 601, 613, 617, 719, 809, 881, 919, 967, 1091, 1123, 1129, 1237, 1249, 1289
Offset: 1
Keywords
References
- The sequence consists of the prime numbers p that are champions (left to right maxima) of the function |theta(p^3)-p^3|, where theta(p) is the Chebyshev theta function.
Links
- Dana Jacobsen, Table of n, a(n) for n = 1..85
- M. Planat and P. Solé, Efficient prime counting and the Chebyshev primes arXiv:1109.6489 [math.NT]
Programs
-
Perl
use ntheory ":all"; my($max,$f)=(0); forprimes { $f=abs(chebyshev_theta($**3)-$**3); if ($f > $max) { say; $max=$f; } } 1000; # Dana Jacobsen, Dec 28 2015
Extensions
More terms from Dana Jacobsen, Dec 28 2015