A197465 Number of free tetrakis polyaboloes (poly-[4.8^2]-tiles) with n cells, allowing holes, where division into tetrakis cells (triangular quarters of square grid cells) is significant.
1, 2, 2, 6, 8, 22, 42, 112, 252, 650, 1584, 4091, 10369, 26938, 69651, 182116, 476272, 1253067, 3302187, 8733551, 23142116, 61477564, 163612714, 436278921, 1165218495, 3117021788, 8349892686, 22397754046, 60153261611
Offset: 1
Examples
For n=3 there are 4 triaboloes. Of these, 2 conform to the tetrakis grid. Each of these 2 has a unique dissection into 6 tetrakis cells. - _George Sicherman_, Mar 25 2021
References
- Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Sections 2.7, 6.2 and 9.4.
Links
- Peter Kagey, Example illustrating a(4) = 6.
- Wikipedia, Tetrakis square tiling
Crossrefs
Analogous for other tilings: A000105 (square), A000228 (hexagonal), A000577 (triangular), A197156 (prismatic pentagonal), A197159 (floret pentagonal), A197459 (rhombille), A197462 (kisrhombille), A309159 (snub square), A343398 (trihexagonal), A343406 (truncated hexagonal), A343577 (truncated square).
Extensions
Name clarified by George Sicherman, Mar 25 2021
a(21)-a(26) from Aaron N. Siegel, May 18 2022
a(27)-a(29) from Bert Dobbelaere, Jun 04 2025
Comments