A197504 1 together with the odd numbers m >= 3 for which phi(2*m)/2 = phi(m)/2 is odd, where phi = A000010 (Euler's totient).
1, 3, 7, 9, 11, 19, 23, 27, 31, 43, 47, 49, 59, 67, 71, 79, 81, 83, 103, 107, 121, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 243, 251, 263, 271, 283, 307, 311, 331, 343, 347, 359, 361, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503, 523, 529
Offset: 1
Examples
Factorization for n >= 2: 3, 7, 3^2, 11, 19, 23, 3^3, 31, 43, 47, 7^2, 59, 67, 71, 79, 3^4, 83, 103, 107, ... - _Wolfdieter Lang_, Nov 12 2019
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 121-122.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := If[n == 2, 1, EulerPhi[n]/{1, 1, 2, 1}[[Mod[n, 4] + 1]]]; aa = {}; Do[If[OddQ[a[n]], AppendTo[aa, n/2]], {n, 2, 1000}]; aa
Formula
a(1) = 1, and for n >= 2 the set of all positive powers of each prime p == 3 (mod 4) (A002145), sorted increasingly.
Extensions
Name changed by Wolfdieter Lang, Nov 12 2019
Name edited by Jon E. Schoenfield, Jan 21 2023
Comments