A197632 Lerch primes: odd primes that divide their Lerch quotients A197630.
3, 103, 839, 2237
Offset: 1
Examples
The 27th prime is 103, and A197631(27) = 0, so 103 is a member.
Links
- John Blythe Dobson, A note on Lerch primes, arXiv:1311.2242 [math.NT], 2014.
- John Blythe Dobson, A Characterization of Wilson-Lerch Primes, Integers, Vol. 16 (2016), A51.
- René Gy, Generalized Lerch Primes, Integers, Vol. 18 (2018), A10.
- M. Lerch, Zur Theorie des Fermatschen Quotienten (a^(p-1)-1)/p = q(a), Mathematische Annalen, Vol. 60, No. 4 (1905), pp. 471-490.
- Jonathan Sondow, Lerch quotients, Lerch primes, Fermat-Wilson quotients, and the Wieferich-non-Wilson primes 2, 3, 14771, In: M. Nathanson (ed.), Combinatorial and Additive Number Theory. Springer Proceedings in Mathematics & Statistics, Vol. 101, Springer, New York, NY, 2014, pp. 243-255, preprint, arXiv:1110.3113 [math.NT], 2011-2012.
Programs
-
Mathematica
Cases[Prime[Range[2, 500]], p_ /; Divisible[(Sum[(k^(p-1)-1)/p, {k, 1, p-1}] - ((p-1)! + 1)/p)/p, p]] (* Jean-François Alcover, Nov 21 2018 *)
-
PARI
is(p)=my(m=p-1,P=p^3); !sum(k=1, m, Mod(k,P)^m,-p-m!) && isprime(p) \\ Charles R Greathouse IV, Jun 18 2012
Comments