A197655 Triangle by rows T(n,k), showing the number of meanders with length (n+1)*6 and containing (k+1)*6 Ls and (n-k)*6 Rs, where Ls and Rs denote arcs of equal length and a central angle of 60 degrees which are positively or negatively oriented.
1, 6, 1, 63, 126, 1, 364, 4374, 1092, 1, 1365, 85120, 127680, 5460, 1, 3906, 984375, 6000000, 1968750, 19530, 1, 9331, 7562646, 157828125, 210437500, 18906615, 55986, 1, 19608, 42824236, 2628749256, 11029593750, 4381248760, 128472708, 137256, 1
Offset: 0
Examples
For n = 4 and k = 2, T(n,k) = 127680 Example for recursive formula: T(1,4,2) = 6 T(5,4,4-1-2) = T(5,4,1) = 13504 T(6,4,2) = 6^6 + 6*13504 = 127680 Example for closed formula: T(4,2) = A + B + C + D + E + F A = 6^6 = 46656 B = 6^5 * 4 = 31104 C = 6^4 * 4^2 = 20736 D = 6^3 * 4^3 = 13824 E = 6^2 * 4^4 = 9216 F = 6 * 4^5 = 6144 T(4,2) = 127680 Some examples of list S and allocated values of dir if n = 4 and k = 2: Length(S) = (4+1)*6 = 30 and S contains (2+1)*6 = 18 Ls. S: L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,R,R,R,R,R,R,R,R,R,R,R,R dir: 1,2,3,4,5,0,1,2,3,4,5,0,1,2,3,4,5,0,0,5,4,3,2,1,0,5,4,3,2,1 S: L,L,L,L,L,L,L,L,L,L,R,L,L,R,L,R,R,R,L,R,R,L,R,R,R,L,L,R,R,L dir: 1,2,3,4,5,0,1,2,3,4,4,4,5,5,5,5,4,3,3,3,2,2,2,1,0,0,1,1,0,0 S: L,L,L,L,R,L,L,R,L,L,R,L,R,R,L,L,L,L,L,R,R,L,L,L,R,R,R,R,L,R dir: 1,2,3,4,4,4,5,5,5,0,0,0,0,5,5,0,1,2,3,3,2,2,3,4,4,3,2,1,1,1 Each value of dir occurs 30/6 = 5 times.
Links
- Susanne Wienand, Table of n, a(n) for n = 0..209
- Peter Luschny, Meanders and walks on the circle.
Programs
-
Maple
A197655 := (n,k) -> (1+n)*(1+3*k+3*k^2-n-3*k*n+n^2)*(1+k+k^2+n-k*n+n^2)* binomial(n,k)^6/(1+k)^5; seq(print(seq(A197655(n, k), k=0..n)), n=0..7); # Peter Luschny, Oct 21 2011
-
Mathematica
T[n_, k_] := (1 + n)(1 + 3k + 3k^2 - n - 3k*n + n^2)(1 + k + k^2 + n - k*n + n^2) Binomial[n, k]^6/(1 + k)^5; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2018, after Peter Luschny *)
-
PARI
A197655(n,k) = {if(n==1+2*k,6,(1+k)*(1-((n-k)/(1+k))^6)/(1+2*k-n))*binomial(n,k)^6} \\ Peter Luschny, Nov 24 2011
-
Sage
def S(N,n,k) : return binomial(n,k)^(N+1)*sum(sum((-1)^(N-j+i)*binomial(N-i,j)*((n+1)/(k+1))^j for i in (0..N) for j in (0..N))) def A197655(n,k) : return S(5,n,k) for n in (0..5) : print([A197655(n,k) for k in (0..n)]) # Peter Luschny, Oct 24 2011
Formula
recursive formula (conjectured):
T(n,k) = T(6,n,k)
T(6,n,k) = T(1,n,k)^6 + T(1,n,k)*T(5,n,n-1-k), 0 <= k < n
T(6,n,n) = 1 k = n
T(5,n,k) = T(1,n,k)^5 + T(1,n,k)*T(4,n,n-1-k), 0 <= k < n
T(5,n,n) = 1 k = n
T(4,n,k) = T(1,n,k)^4 + T(1,n,k)*T(3,n,n-1-k), 0 <= k < n
T(4,n,n) = 1 k = n
T(3,n,k) = T(1,n,k)^3 + T(1,n,k)*T(2,n,n-1-k), 0 <= k < n
T(3,n,n) = 1 k = n
T(2,n,k) = T(1,n,k)^2 + T(1,n,k)*T(1,n,n-1-k), 0 <= k < n
T(2,n,n) = 1 k = n
T(5,n,k) = A197654
T(4,n,k) = A197653
T(3,n,k) = A194595
T(2,n,k) = A103371
T(1,n,k) = A007318 (Pascal's Triangle)
closed formula (conjectured): T(n,n) = 1, k = n
T(n,k) = A + B + C + D + E + F, k < n
A = (C(n,k))^6
B = (C(n,k))^5 * C(n,n-1-k)
C = (C(n,k))^4 *(C(n,n-1-k))^2
D = (C(n,k))^3 *(C(n,n-1-k))^3
E = (C(n,k))^2 *(C(n,n-1-k))^4
F = C(n,k) *(C(n,n-1-k))^5
[Susanne Wienand]
Let S(n,k) = binomial(2*n,n)^(k+1)*((n+1)^(k+1)-n^(k+1))/(n+1)^k. Then T(2*n,n) = S(n,5). (Cf. A103371, A194595, A197653). [Peter Luschny, Oct 21 2011]
T(n,k) = A198065(n+1,k+1)C(n,k)^6/(k+1)^5. [Peter Luschny, Oct 29 2011]
T(n,k) = h(n,k)*binomial(n,k)^6, where h(n,k) = (1+k)*(1-((n-k)/(1+k))^6)/(1+2*k-n) if 1+2*k-n <> 0 else h(n,k) = 6. [Peter Luschny, Nov 24 2011]
Comments