cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197682 Decimal expansion of Pi/(2 + 2*Pi).

Original entry on oeis.org

3, 7, 9, 2, 7, 3, 4, 9, 6, 4, 9, 7, 3, 8, 8, 0, 7, 2, 6, 7, 2, 2, 1, 5, 3, 4, 4, 5, 2, 2, 4, 4, 6, 4, 3, 2, 0, 6, 9, 2, 1, 3, 1, 8, 2, 8, 2, 0, 2, 6, 5, 4, 9, 8, 3, 3, 4, 4, 9, 4, 1, 0, 6, 8, 9, 1, 2, 7, 4, 0, 6, 8, 5, 5, 0, 4, 7, 8, 6, 8, 8, 1, 6, 0, 3, 1, 6, 5, 8, 7, 0, 0, 7, 6, 7, 7, 8, 8, 6
Offset: 0

Views

Author

Clark Kimberling, Oct 17 2011

Keywords

Comments

The number Pi/(2 + 2*Pi) is the least x > 0 such that sin(x) = cos(Pi*x).
If b and c are distinct real numbers, the solutions of sin(bx) = cos(cx) are x = (k - 1/2)*Pi/(b + c), where k runs through the integers. Thus, if b > 0 and c > 0, the least solution x > 0 is Pi/(2*b + 2*c), so that this is also the least x > 0 for which sin(c*x) = cos(b*x). Related sequences, each with a Mathematica program which includes a graph:
...
b.....c.......sequence........x
1.....2.......A019673........ x = Pi/6
1.....3.......A019678........ x = Pi/8
1.....4.......(A000796)/10... x = Pi/10
1.....Pi......A197682........ x = Pi/(2+2*Pi)
1.....2*Pi....A197683........ x = Pi/(2+4*Pi)
1.....1/Pi....A197684........ x = Pi^2/(2+2*Pi)
1.....2/Pi....A197685........ x = Pi^2/(4+2*Pi)
1.....Pi/2....A197686........ x = Pi/(2+Pi)
1.....Pi/3....A197687........ x = 3*Pi/(6+2*Pi)
1.....Pi/4....A197688........ x = 2*Pi/(4+Pi)
1.....Pi/6....A197689........ x = 3*Pi/(6+Pi)
2.....3.......(A000796)/10... x = Pi/10
2.....Pi......A197690........ x = Pi/(4+2*Pi)
2.....2*Pi....A197691........ x = Pi/(4+4*Pi)
2.....1/Pi....A197692........ x = Pi^2/(2+4*Pi)
2.....2/Pi....A197693........ x = Pi^2/(4+4*Pi)
2.....Pi/2....A197694........ x = Pi/(4+Pi)
3.....Pi......A197695........ x = Pi/(2+2*Pi)
3.....2*Pi....A197696........ x = Pi/(6+4*Pi)
3.....1/Pi....A197697........ x = Pi^2/(2+6*Pi)
3.....2/Pi....A197698........ x = Pi^2/(4+6*Pi)
3.....Pi/2....A197699........ x = Pi/(6+Pi)
1/2...Pi......A197700........ x = Pi/(1+2*Pi)
1/2...2*Pi....A197701........ x = Pi/(1+4*Pi)
1/2...1/Pi....A197724........ x = Pi^2/(2+Pi)
1/2...2/Pi....A197725........ x = Pi^2/(4+Pi)
1/2...Pi/2....A197726........ x = Pi/(1+Pi)
1/2...Pi/4....A197727........ x = 2*Pi/(2+Pi)
1/3...Pi/3....A197728........ x = 3*Pi/(2+2*Pi)
1/3...Pi/6....A197729........ x = 3*Pi/(2+Pi)
2/3...Pi/6....A197730........ x = 3*Pi/(4+Pi)
1/4...Pi......A197731........ x = 2*Pi/(1+4*Pi)
1/4...Pi/2....A197732........ x = 2*Pi/(1+2*Pi)
1/4...Pi/4....A197733........ x = 2*Pi/(1+Pi)
1/5...Pi/5....10*A197691..... x = 5*Pi/(2+2*Pi)
1/6...Pi/6....A197735........ x = 3*Pi/(1+Pi)
1/8...Pi/8....A197736........ x = 4*Pi/(1+Pi)

Examples

			0.37927349649738807267221534452244643...
		

Crossrefs

Cf. A197683.

Programs

  • Mathematica
    b = 1; c = Pi;
    t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, .3, .4}]
    N[Pi/(2*b + 2*c), 110]
    RealDigits[%]  (* A197682 *)
    Simplify[Pi/(2*b + 2*c)]
    Plot[{Sin[b*x], Cos[c*x]}, {x, 0, Pi}]
  • PARI
    1/(2/Pi+2) \\ Charles R Greathouse IV, Sep 27 2022