A197700 Decimal expansion of Pi/(1 + 2*Pi).
4, 3, 1, 3, 4, 8, 7, 1, 9, 1, 5, 0, 7, 9, 3, 5, 1, 4, 4, 2, 6, 7, 9, 3, 8, 3, 7, 1, 4, 5, 6, 7, 5, 3, 3, 2, 3, 9, 7, 9, 5, 3, 2, 3, 5, 5, 9, 7, 1, 7, 3, 1, 5, 2, 6, 0, 6, 3, 0, 8, 1, 4, 2, 0, 9, 9, 7, 6, 2, 9, 1, 1, 6, 7, 7, 7, 2, 3, 1, 0, 6, 0, 7, 3, 2, 2, 0, 7, 0, 7, 4, 0, 2, 1, 8, 5, 9, 4, 9
Offset: 0
Examples
0.4313487191507935144267938371456753323979...
Crossrefs
Cf. A197682.
Programs
-
Mathematica
b = 1/2; c = Pi; t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, .43, .44}] N[Pi/(2*b + 2*c), 110] RealDigits[%] (* A197700 *) Simplify[Pi/(2*b + 2*c)] Plot[{Sin[b*x], Cos[c*x]}, {x, 0, 1}] RealDigits[Pi/(1+2 Pi),10,120][[1]] (* Harvey P. Dale, Mar 31 2023 *)
-
PARI
1/(1/Pi+2) \\ Charles R Greathouse IV, Sep 30 2022
Comments