A197688 Decimal expansion of 2*Pi/(4+Pi).
8, 7, 9, 8, 0, 1, 6, 9, 2, 9, 7, 6, 8, 8, 5, 2, 4, 8, 1, 7, 9, 0, 4, 2, 7, 4, 9, 0, 2, 7, 4, 2, 6, 7, 6, 7, 5, 9, 8, 3, 7, 4, 8, 8, 6, 4, 7, 5, 3, 7, 8, 4, 8, 2, 5, 3, 1, 8, 9, 9, 7, 3, 6, 2, 5, 1, 6, 8, 0, 4, 2, 6, 1, 6, 7, 8, 0, 6, 1, 9, 5, 3, 7, 3, 7, 0, 0, 9, 1, 5, 8, 7, 3, 8, 5, 2, 6, 7, 0
Offset: 0
Examples
x=0.8798016929768852481790427490274267675983748864...
References
- Herbert Oertel and P. Erhard, Prandtl-Essentials of Fluid Mechanics, Springer, 2010, pages 163-164.
Crossrefs
Cf. A197682.
Programs
-
Mathematica
b = 1; c = Pi/4; t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, .8, .9}] N[Pi/(2*b + 2*c), 110] RealDigits[%] (* A197688 *) Simplify[Pi/(2*b + 2*c)] Plot[{Sin[b*x], Cos[c*x]}, {x, 0, Pi/2}] RealDigits[(2 Pi)/(4+Pi),10,120][[1]] (* Harvey P. Dale, Dec 30 2023 *)
-
PARI
2*Pi/(4+Pi) \\ Charles R Greathouse IV, Jul 22 2014
Comments