cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197762 Decimal expansion of sqrt(1/phi), where phi = (1 + sqrt(5))/2 is the golden ratio.

Original entry on oeis.org

7, 8, 6, 1, 5, 1, 3, 7, 7, 7, 5, 7, 4, 2, 3, 2, 8, 6, 0, 6, 9, 5, 5, 8, 5, 8, 5, 8, 4, 2, 9, 5, 8, 9, 2, 9, 5, 2, 3, 1, 2, 2, 0, 5, 7, 8, 3, 7, 7, 2, 3, 2, 3, 7, 6, 6, 4, 9, 0, 1, 9, 7, 0, 1, 0, 1, 1, 8, 2, 0, 4, 7, 6, 2, 2, 3, 1, 0, 9, 1, 3, 7, 1, 1, 9, 1, 2, 8, 8, 9, 1, 5, 8, 5, 0, 8, 1, 3, 5
Offset: 0

Views

Author

Clark Kimberling, Oct 19 2011

Keywords

Comments

The hyperbolas y^2-x^2=1 and xy=1 meet at (1/c,c) and (-1/c,c), where c=sqrt(golden ratio); see the Mathematica program for a graph; see A189339 for hyperbolas meeting at (c,1/c) and (-c,-1/c).
This number is the eccentricity of an ellipse inscribed in a golden rectangle. - Jean-François Alcover, Sep 03 2015
c/sqrt(-1) is the limit of Pi(a;n)/2 := a^n * sqrt(a - f(a;n)) with f(a;0) = 0, and f(a;n) = sqrt(a + f(a;n-1)) for n >= 1, if one takes a = 1. For a=2 this gives Viète's formula for Pi/2 (see A019669). - Wolfdieter Lang, Jul 06 2018

Examples

			0.786151377757423286069558585842958929523122057...
		

Crossrefs

Programs

  • Mathematica
    N[1/Sqrt[GoldenRatio], 110]
    RealDigits[%]
    FindRoot[x*Sqrt[1 + x^2] == 1, {x, 1.2, 1.3}, WorkingPrecision -> 110]
    Plot[{Sqrt[1 + x^2], 1/x}, {x, 0, 3}]
  • PARI
    sqrt(2/(1+sqrt(5))) \\ Michel Marcus, Sep 03 2015
    
  • PARI
    my(c=1/quadgen(5)); a_vector(len) = digits(sqrtint(floor(c*100^len))); \\ Kevin Ryde, Jul 12 2025

Formula

Equals sqrt(1/phi) = sqrt(phi-1), with phi = A001622.
From Amiram Eldar, Feb 07 2022: (Start)
Equals 1/A139339.
Equals tan(arcsin(1/phi)).
Equals sin(arccos(1/phi)).
Equals cos(arcsin(1/phi)).
Equals cot(arccos(1/phi)). (End)