A197762 Decimal expansion of sqrt(1/phi), where phi = (1 + sqrt(5))/2 is the golden ratio.
7, 8, 6, 1, 5, 1, 3, 7, 7, 7, 5, 7, 4, 2, 3, 2, 8, 6, 0, 6, 9, 5, 5, 8, 5, 8, 5, 8, 4, 2, 9, 5, 8, 9, 2, 9, 5, 2, 3, 1, 2, 2, 0, 5, 7, 8, 3, 7, 7, 2, 3, 2, 3, 7, 6, 6, 4, 9, 0, 1, 9, 7, 0, 1, 0, 1, 1, 8, 2, 0, 4, 7, 6, 2, 2, 3, 1, 0, 9, 1, 3, 7, 1, 1, 9, 1, 2, 8, 8, 9, 1, 5, 8, 5, 0, 8, 1, 3, 5
Offset: 0
Examples
0.786151377757423286069558585842958929523122057...
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
N[1/Sqrt[GoldenRatio], 110] RealDigits[%] FindRoot[x*Sqrt[1 + x^2] == 1, {x, 1.2, 1.3}, WorkingPrecision -> 110] Plot[{Sqrt[1 + x^2], 1/x}, {x, 0, 3}]
-
PARI
sqrt(2/(1+sqrt(5))) \\ Michel Marcus, Sep 03 2015
-
PARI
my(c=1/quadgen(5)); a_vector(len) = digits(sqrtint(floor(c*100^len))); \\ Kevin Ryde, Jul 12 2025
Formula
Equals sqrt(1/phi) = sqrt(phi-1), with phi = A001622.
From Amiram Eldar, Feb 07 2022: (Start)
Equals 1/A139339.
Equals tan(arcsin(1/phi)).
Equals sin(arccos(1/phi)).
Equals cos(arcsin(1/phi)).
Equals cot(arccos(1/phi)). (End)
Comments