cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197816 Smallest composite number m such that m and the greatest prime divisor of m begin with n.

Original entry on oeis.org

102, 203, 36, 410, 50, 603, 70, 801, 970, 1010, 110, 1270, 130, 1490, 1510, 1630, 170, 1810, 190, 20030, 2110, 2230, 230, 2410, 2510, 2630, 2710, 2810, 290, 3070, 310, 32030, 3310, 3470, 3530, 3670, 370, 3830, 3970, 4010, 410, 4210, 430, 4430, 4570, 4610, 470
Offset: 1

Views

Author

Michel Lagneau, Oct 18 2011

Keywords

Comments

A majority of numbers are divisible by 10.
The case m prime gives A062584 (First occurrence of n in the decimal representation of primes).

Examples

			a(6) = 603 = 3^2*67 => 603 and 67 start with 6.
		

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 47 do: l1:=length(n):i:=0:for m from 2 to 100000 while(i=0) do: x:=factorset(m):k:=nops(x):y:=x[k]: l2:=length(m):x1:=floor(m/(10^(l2-l1))): l3:=length(y):x2:=floor(y/(10^(l3-l1))):if x1=n and x2=n and l2>=l1 and l3 >=l1 and type(m,prime)=false then i:=1: printf(`%d, `,m):else fi :od:od:
    # Alternative:
    f:= proc(n) local d,k,p;
      for d from 1 do
        for k from 10^d*n to 10^d*(n+1)-1 do
           if not isprime(k) then
             p:= max(numtheory:-factorset(k));
             if p >= n and floor(p/10^(length(p)-length(n))) = n then return k fi
           fi od od
    end proc:
    map(f, [$1..100]); # Robert Israel, Jun 04 2018

Formula

a(n) = 10*A018800(n) for n >= 9. - Robert Israel, Jun 04 2018