A197816 Smallest composite number m such that m and the greatest prime divisor of m begin with n.
102, 203, 36, 410, 50, 603, 70, 801, 970, 1010, 110, 1270, 130, 1490, 1510, 1630, 170, 1810, 190, 20030, 2110, 2230, 230, 2410, 2510, 2630, 2710, 2810, 290, 3070, 310, 32030, 3310, 3470, 3530, 3670, 370, 3830, 3970, 4010, 410, 4210, 430, 4430, 4570, 4610, 470
Offset: 1
Examples
a(6) = 603 = 3^2*67 => 603 and 67 start with 6.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): for n from 1 to 47 do: l1:=length(n):i:=0:for m from 2 to 100000 while(i=0) do: x:=factorset(m):k:=nops(x):y:=x[k]: l2:=length(m):x1:=floor(m/(10^(l2-l1))): l3:=length(y):x2:=floor(y/(10^(l3-l1))):if x1=n and x2=n and l2>=l1 and l3 >=l1 and type(m,prime)=false then i:=1: printf(`%d, `,m):else fi :od:od: # Alternative: f:= proc(n) local d,k,p; for d from 1 do for k from 10^d*n to 10^d*(n+1)-1 do if not isprime(k) then p:= max(numtheory:-factorset(k)); if p >= n and floor(p/10^(length(p)-length(n))) = n then return k fi fi od od end proc: map(f, [$1..100]); # Robert Israel, Jun 04 2018
Formula
a(n) = 10*A018800(n) for n >= 9. - Robert Israel, Jun 04 2018
Comments