A198018 Yet unseen primes occurring within the first 1,2,3,4,... digits of Pi, A000796 (ordered according to position of last, then initial digit).
3, 31, 41, 5, 314159, 14159, 4159, 59, 2, 1592653, 653, 53, 141592653589, 89, 415926535897, 5926535897, 6535897, 35897, 5897, 97, 7, 358979, 58979, 79, 589793, 9265358979323, 9323, 23, 93238462643, 462643, 643, 43, 433, 41592653589793238462643383, 89793238462643383, 38462643383, 2643383, 383, 83
Offset: 1
Examples
The first digit of the sequence is the prime a(1)=3. The first two digits, "3.1", yield the prime a(2)=31. In "3.14" there are no more primes. In "3.141" there is the prime a(3)=41. In "3.1415" there is the prime a(4)=5. In "3.14159" we have the primes 314159, 14159, 4159 and 59.
Crossrefs
Programs
-
PARI
{my(PI=digits(Pi\.1^30), seen=[]); for(i=1, #PI-1, for(j=1, i, my(p=fromdigits(PI[j..i])); !isprime(p) || setsearch(seen, p) || print1(p", ") || seen=setunion(seen,[p])))} \\ edited to use current PARI syntax by Andrew Howroyd and M. F. Hasler, May 10 2021
-
PARI
{my(a=List()); for(m=0, precision(.)-3, my(pi=Pi\.1^m, p); for(k=0, m, !isprime(p=pi%10^(m-k+1)) && setsearch(Set(a), p) && listput(a,p))); a} \\ M. F. Hasler, May 10 2021
Comments