A198032 Numbers m such that the number of distinct residues of the congruence x^m (mod 2m+1) equals 2m+1, x=0..2m.
0, 1, 7, 17, 19, 25, 27, 43, 47, 55, 57, 59, 61, 71, 77, 79, 91, 93, 97, 101, 107, 109, 117, 127, 133, 143, 145, 147, 149, 151, 159, 161, 163, 167, 169, 177, 185, 195, 197, 199, 203, 205, 207, 223, 227, 235, 241, 257, 259, 263, 267, 271, 275, 277, 289, 291
Offset: 0
Keywords
Examples
a(2) = 7 because x^7 == 0, 1, ... 14 (mod 15) => 2*7+1 = 15 distinct residues.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
lst:={};Table[If[Length[Union[PowerMod[Range[0,2*n],n,2*n+1]]]==2*n+1,AppendTo[lst,n]],{n,0,320}];lst
Comments