A198035 Numbers n such that n^2 is a concatenation of two nonzero squares with no trailing zeros in n.
7, 13, 19, 35, 38, 41, 57, 65, 125, 205, 223, 253, 285, 305, 475, 487, 721, 905, 975, 985, 1012, 1201, 1265, 1301, 1442, 1518, 1771, 2024, 2163, 2225, 2277, 2402, 2435, 3075, 3125, 3925, 4901, 6013, 7045, 7969, 8225, 8855, 9607, 9625, 9805, 10815, 11125, 11385, 12025
Offset: 1
Examples
a(150)=1002445 and 1002445^2=1004895978025=100489_5978025, x^2=317^2=100489, y^2=2445^2=5978025.
Links
- Zak Seidov, 150 values for n,a,b
Crossrefs
Cf. A048375.
Programs
-
Mathematica
Reap[Do[r=0; If[Mod[n,10]>0, Do[mo=PowerMod[n,2,10^k]; If[mo>10^(k-1)-1 && IntegerQ[Sqrt[mo]] && IntegerQ[Sqrt[qu=Quotient[n^2,10^k]]], r=1; Break[]], {k,Log[10,n^2]}]; If[r>0,Sow[n]; Print[{n,Sqrt[qu],Sqrt@mo}]]], {n,7,10^6}]][[2,1]] (* Zak Seidov, Oct 20 2011 *)
Comments