cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198035 Numbers n such that n^2 is a concatenation of two nonzero squares with no trailing zeros in n.

Original entry on oeis.org

7, 13, 19, 35, 38, 41, 57, 65, 125, 205, 223, 253, 285, 305, 475, 487, 721, 905, 975, 985, 1012, 1201, 1265, 1301, 1442, 1518, 1771, 2024, 2163, 2225, 2277, 2402, 2435, 3075, 3125, 3925, 4901, 6013, 7045, 7969, 8225, 8855, 9607, 9625, 9805, 10815, 11125, 11385, 12025
Offset: 1

Views

Author

Zak Seidov, Oct 20 2011

Keywords

Comments

Primitive solutions of A048375 (whose numbers can have trailing zeros).

Examples

			a(150)=1002445 and 1002445^2=1004895978025=100489_5978025, x^2=317^2=100489, y^2=2445^2=5978025.
		

Crossrefs

Cf. A048375.

Programs

  • Mathematica
    Reap[Do[r=0; If[Mod[n,10]>0, Do[mo=PowerMod[n,2,10^k]; If[mo>10^(k-1)-1 && IntegerQ[Sqrt[mo]] && IntegerQ[Sqrt[qu=Quotient[n^2,10^k]]], r=1; Break[]], {k,Log[10,n^2]}]; If[r>0,Sow[n]; Print[{n,Sqrt[qu],Sqrt@mo}]]], {n,7,10^6}]][[2,1]] (* Zak Seidov, Oct 20 2011 *)