A198063 Triangle read by rows (n >= 0, 0 <= k <= n, m = 3); T(n,k) = Sum{j=0..m} Sum{i=0..m} (-1)^(j+i)*C(i,j)*n^j*k^(m-j).
0, 1, 1, 8, 4, 8, 27, 15, 15, 27, 64, 40, 32, 40, 64, 125, 85, 65, 65, 85, 125, 216, 156, 120, 108, 120, 156, 216, 343, 259, 203, 175, 175, 203, 259, 343, 512, 400, 320, 272, 256, 272, 320, 400, 512, 729, 585, 477, 405, 369, 369, 405, 477, 585, 729
Offset: 0
Examples
[0] 0 [1] 1, 1 [2] 8, 4, 8 [3] 27, 15, 15, 27 [4] 64, 40, 32, 40, 64 [5] 125, 85, 65, 65, 85, 125 [6] 216, 156, 120, 108, 120, 156, 216 [7] 343, 259, 203, 175, 175, 203, 259, 343 From _M. F. Hasler_, Nov 22 2018: (Start) Can also be seen as the square array A(n,k)=(n+k)*(n^2 + k^2) read by antidiagonals: n | k: 0 1 2 3 ... --+---------------------- 0 | 0 1 8 27 ... 1 | 1 4 15 40 ... 2 | 8 15 32 65 ... 3 | 27 40 65 108 ... ... ... ... (End)
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
Programs
-
Magma
[[2*k^2*n-2*k*n^2+n^3: k in [0..n]]: n in [0..12]]; // G. C. Greubel, Nov 23 2018
-
Maple
A198063 := (n,k) -> 2*k^2*n-2*k*n^2+n^3:
-
Mathematica
t[n_, k_] := 2 k^2*n - 2 k*n^2 + n^3; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 22 2018 *)
-
PARI
A198063(n,k)=2*k^2*n-2*k*n^2+n^3 \\ See also A321500. - M. F. Hasler, Nov 22 2018
-
Sage
[[ 2*k^2*n-2*k*n^2+n^3 for k in range(n+1)] for n in range(12)] # G. C. Greubel, Nov 23 2018
Comments