cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198067 Square array read by antidiagonals, n>=1, k>=1; T(n,k) is the number of nonprime numbers which are prime to n and are not strong divisors of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 1, 2, 3, 1, 2, 1, 2, 1, 1, 1, 1, 6, 2, 3, 1, 3, 1, 2, 1, 1, 1, 1, 1, 6, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 7, 1, 6, 2, 3, 1, 3, 1, 2
Offset: 1

Views

Author

Peter Luschny, Nov 07 2011

Keywords

Comments

We say d is a strong divisor of n iff d is a divisor of n and d > 1. Let alpha(n) be number of nonprime numbers in the reduced residue system of n. Then alpha(n) = T(n,1) = T(n,n).

Examples

			T(15, 22) = card({1,4,8,14}) = 4 because the coprimes of 15 are {1,2,4,7,8,11,13,14} and the strong divisors of 22 are {2,11,22}.
-
[x][1][2][3][4][5][6][7][8]
[1] 1, 1, 1, 1, 1, 1, 1, 1
[2] 1, 1, 1, 1, 1, 1, 1, 1
[3] 1, 1, 1, 1, 1, 1, 1, 1
[4] 1, 1, 1, 1, 1, 1, 1, 1
[5] 2, 2, 2, 1, 2, 2, 2, 1
[6] 1, 1, 1, 1, 1, 1, 1, 1
[7] 3, 3, 3, 2, 3, 2, 3, 2
[8] 1, 1, 1, 1, 1, 1, 1, 1
-
Triangle k=1..n, n>=1:
[1]           1
[2]          1, 1
[3]        1, 1, 1
[4]       1, 1, 1, 1
[5]     2, 2, 2, 1, 2
[6]    1, 1, 1, 1, 1, 1
[7]  3, 3, 3, 2, 3, 2, 3
[8] 1, 1, 1, 1, 1, 1, 1, 1
-
Triangle n=1..k, k>=1:
[1]           1
[2]          1, 1
[3]        1, 1, 1
[4]       1, 1, 1, 1
[5]     1, 1, 1, 1, 2
[6]    1, 1, 1, 1, 2, 1
[7]  1, 1, 1, 1, 2, 1, 3
[8] 1, 1, 1, 1, 1, 1, 2, 1
		

Crossrefs

Programs

  • Maple
    strongdivisors := n -> numtheory[divisors](n) minus {1}:
    coprimes  := n -> select(k->igcd(k, n)=1, {$1..n}):
    nonprimes := n -> remove(isprime, {$1..n});
    T := (n,k) -> nops(nonprimes(n) intersect (coprimes(n) minus strongdivisors(k))):
    seq(seq(T(n-k+1, k), k=1..n), n=1..13);  # Square array by antidiagonals.
    seq(print(seq(T(n,k), k=1..n)), n=1..8); # Lower triangle.
    seq(print(seq(T(n,k), n=1..k)), k=1..8); # Upper triangle.