A198163 Primes from merging of 3 successive digits in decimal expansion of sqrt(2).
421, 373, 887, 569, 967, 769, 317, 797, 379, 907, 107, 503, 641, 157, 727, 229, 149, 709, 659, 557, 571, 701, 109, 599, 997, 971, 919, 523, 839, 397, 251, 463, 331, 829, 523, 239, 547, 457, 877, 599, 617, 983, 557, 337, 857, 701, 113, 997, 503, 277, 823, 929
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..2000
Crossrefs
Cf. A103773, A103789, A103793, A103808, A103809, A103810, A103811, A103812, A104824, A104825, A104826, A104843, A104844, A104845, A104846, A104847, A104848, A104849, A104850, A198161, A198162, A198164, A198165, A198166, A198167, A198168, A198169, A198170, A198171, A198172, A198173, A198174, A198175, A104851, A198177.
Programs
-
Mathematica
With[{len=3},Select[FromDigits/@Partition[RealDigits[Sqrt[2],10,1000][[1]], len,1],IntegerLength[#]==len&&PrimeQ[#]&]]
Comments