A198195 a(n) is the smallest prime(m) such that the interval (prime(m)*n, prime(m+1)*n) contains exactly five primes.
509, 31, 7, 7, 7, 19, 13, 3, 3, 3, 97, 11, 17, 41, 41, 11, 2, 313, 2, 2, 137, 2, 2, 281, 227, 149, 149, 197, 281, 191, 101, 569, 191, 857, 827, 311, 569, 599, 431, 599, 1451, 1091, 809, 1019, 419, 1667, 2237, 4517, 5009, 3671, 1997, 1289, 1451, 3329, 3329
Offset: 2
Keywords
Examples
Let n=14, and consider intervals of the form (14*prime(m), 14*prime(m+1)). For 2, 3, 5, ..., the intervals (28,42), (42,70), (70,98), (98,154), (154,182), (182,238), (238,266)... contain 4, 6, 6, 11, 6, 9, 5,... primes. Hence the smallest such prime is 17.
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..100
Comments