cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198200 G.f.: q-cosh(x,q)^2 - q-sinh(x,q)^2 at q=-x.

Original entry on oeis.org

1, 0, 1, 2, 3, 6, 10, 16, 28, 48, 79, 130, 215, 356, 587, 960, 1566, 2558, 4176, 6804, 11066, 17978, 29198, 47406, 76916, 124716, 202152, 327600, 530775, 859734, 1392265, 2254336, 3649840, 5908632, 9564377, 15480706, 25055322, 40549980, 65624224, 106199306, 171856555, 278099872
Offset: 0

Views

Author

Paul D. Hanna, Oct 22 2011

Keywords

Comments

This sequence illustrates in part the identities:
* q-cosh(x,q)^2 - q-sinh(x,q)^2 = e_q(x,q) / E_q(x,q),
* q-Cosh(x,q)^2 - q-Sinh(x,q)^2 = E_q(x,q) / e_q(x,q).
Here the following q-analogs are employed (see MathWorld links):
q-cosh(x,q) = Sum_{n>=0} x^(2*n)/faq(2*n,q),
q-sinh(x,q) = Sum_{n>=0} x^(2*n+1)/faq(2*n+1,q),
and the dual expressions:
q-Cosh(x,q) = Sum_{n>=0} q^(n*(2*n-1))*x^(2*n)/faq(2*n,q),
q-Sinh(x,q) = Sum_{n>=0} q^(n*(2*n+1))*x^(2*n+1)/faq(2*n+1,q),
along with the dual q-exponential functions of x:
e_q(x,q) = Sum_{n>=0} x^n/faq(n,q),
E_q(x,q) = Sum_{n>=0} q^(n*(n-1)/2) * x^n/faq(n,q),
where
faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1) is the q-factorial of n.

Examples

			G.f.: A(x) = 1 + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 16*x^7 + 28*x^8 +...
The g.f. may be expressed by:
(0) A(x) = q-cosh(x,q)^2 - q-sinh(x,q)^2 at q=-x, where
q-cosh(x,-x) = 1 + x^2 + x^3 + 2*x^4 + 4*x^5 + 6*x^6 + 9*x^7 + 15*x^8 + 25*x^9 + 41*x^10 + 66*x^11 + 105*x^12 +...
q-sinh(x,-x) = x + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 8*x^7 + 13*x^8 + 23*x^9 + 39*x^10 + 62*x^11 + 99*x^12 +...
q-cosh(x,-x)^2 = 1 + 2*x^2 + 2*x^3 + 5*x^4 + 10*x^5 + 17*x^6 + 30*x^7 + 54*x^8 + 96*x^9 + 170*x^10 + 296*x^11 + 510*x^12 +...
q-sinh(x,-x)^2 = x^2 + 2*x^4 + 4*x^5 + 7*x^6 + 14*x^7 + 26*x^8 + 48*x^9 + 91*x^10 + 166*x^11 + 295*x^12 +...
(1) A(x) = e_q(x,q) / E_q(x,q) at q=-x, where
e_q(x,-x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 7*x^5 + 11*x^6 + 17*x^7 + 28*x^8 + 48*x^9 + 80*x^10 + 128*x^11 + 204*x^12 +...
E_q(x,-x) = 1 + x - x^3 - x^4 - x^5 - 2*x^6 - 3*x^7 - 3*x^8 - 2*x^9 + 2*x^11 + 2*x^12 +...
(2) log(A(x)) = (1+x)^2/(1-x^2)*x^2 + (1+x)^4/(1-x^4)*x^4/2 + (1+x)^6/(1-x^6)*x^6/3 + (1+x)^8/(1-x^8)*x^8/4 +...
(3) A(x) = 1/((1 - x^2*(1+x)^2) * (1 - x^4*(1+x)^2) * (1 - x^6*(1+x)^2) * (1 - x^8*(1+x)^2) * (1 - x^10*(1+x)^2) *...).
		

Crossrefs

Cf. A198199 (dual), A152398 (e_q), A198197 (E_q), A198201 (q-cosh), A198202 (q-sinh), A198242 (q-Cosh), A198243 (q-Sinh).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 - x^(2*k)*(1+x)^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 22 2020 *)
  • PARI
    /* (0) G.f. q-cosh(x,q)^2 - q-sinh(x,q)^2 at q=-x: */
    {a(n)=local(cosh_q=sum(k=0, n, x^(2*k)/(prod(j=1, 2*k, (1-(-x)^j)/(1+x))+x*O(x^n))),sinh_q=sum(k=0, n, x^(2*k+1)/(prod(j=1, 2*k+1, (1-(-x)^j)/(1+x))+x*O(x^n))));polcoeff(cosh_q^2-sinh_q^2, n)}
    
  • PARI
    /* (1) G.f. e_q(x,q) / E_q(x,q) at q=-x: */
    {a(n)=local(e_q=sum(k=0, n, x^k/(prod(j=1, k, (1-(-x)^j)/(1+x))+x*O(x^n))),E_q=sum(k=0, n, (-x)^(k*(k-1)/2)*x^k/(prod(j=1, k, (1-(-x)^j)/(1+x))+x*O(x^n))));polcoeff(e_q/E_q, n)}
    
  • PARI
    /* (1) G.f. e_q(x,q) / E_q(x,q) at q=-x: */
    {a(n)=local(e_q=exp(sum(k=1, n, x^k*(1+x)^k/(1-(-x)^k)/k)+x*O(x^n)), E_q=exp(sum(k=1, n, -(-x)^k*(1+x)^k/(1-(-x)^k)/k)+x*O(x^n)));polcoeff(e_q/E_q, n)}
    
  • PARI
    /* (2) G.f. exp( Sum_{n>=1} (1+x)^(2*n)/(1-x^(2*n)) * x^(2*n)/n): */
    {a(n)=polcoeff( exp( sum(m=1,n\2+1,(1+x)^(2*m)/(1-x^(2*m)+x*O(x^n))*x^(2*m)/m)),n)}
    
  • PARI
    /* (3) G.f. Product_{n>=1} 1/(1 - x^(2*n)*(1+x)^2): */
    {a(n)=polcoeff(1/prod(k=1, n, 1-(1+x)^2*x^(2*k)+x*O(x^n)), n)}

Formula

(1) G.f.: e_q(x,q) / E_q(x,q) at q=-x, where
e_q(x,-x) = Sum_{n>=0} x^n/Product_{k=1..n} (1-(-x)^k)/(1+x),
E_q(x,-x) = Sum_{n>=0} (-x)^(n*(n-1)/2) * x^n/Product_{k=1..n} (1-(-x)^k)/(1+x).
(2) G.f.: exp( Sum_{n>=1} (1+x)^(2*n)/(1-x^(2*n)) * x^(2*n)/n ).
(3) G.f.: Product_{n>=1} 1/(1 - x^(2*n)*(1+x)^2).
(4) Limit a(n+1)/a(n) = phi = (sqrt(5)+1)/2 with Limit a(n)/phi^n = 0.75149846280232258786564518960536101986114488526276981847216113150440...
Limit a(n)/phi^n = phi / (2*sqrt(5)) * Product_{k>=2} 1/(1 - phi^(2 - 2*k)). - Vaclav Kotesovec, Oct 22 2020