cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A198383 a(n) = Sum_{k=1..n} 2^(n mod k).

Original entry on oeis.org

1, 2, 4, 5, 10, 10, 20, 22, 37, 40, 80, 72, 144, 158, 278, 283, 566, 548, 1096, 1120, 2106, 2162, 4324, 4210, 8389, 8584, 16650, 16772, 33544, 33194, 66388, 66968, 131882, 132690, 265222, 263607, 527214, 530138, 1052078, 1054254, 2108508, 2103282, 4206564, 4216760
Offset: 1

Views

Author

Benoit Cloitre, Oct 24 2011

Keywords

Comments

A more precise asymptotic formula is given in the link.
From David Morales Marciel, Oct 19 2015: (Start)
If n is prime then a(n)=2*a(n-1).
It appears that for every (deficient, abundant)-pair of numbers (11+6x, 11+6x+1), a(11+6x) > a(11+6x+1).
(End)

Crossrefs

Programs

  • Mathematica
    Table[Sum[2^Mod[n, k], {k, n}], {n, 44}] (* Michael De Vlieger, Oct 19 2015 *)
  • PARI
    a(n) = sum(k=1, n, 2^(n%k))

Formula

a(n) = 2^ceiling(n/2) + O(2^(n/3)).
a(n) = 2*a(n-1) + A000079(n) - A130887(n). - Ridouane Oudra, May 03 2025
Showing 1-1 of 1 results.