A198261 Triangular array read by rows T(n,k) is the number of simple labeled graphs on n nodes with exactly k isolated nodes, 0<=k<=n.
1, 0, 1, 1, 0, 1, 4, 3, 0, 1, 41, 16, 6, 0, 1, 768, 205, 40, 10, 0, 1, 27449, 4608, 615, 80, 15, 0, 1, 1887284, 192143, 16128, 1435, 140, 21, 0, 1, 252522481, 15098272, 768572, 43008, 2870, 224, 28, 0, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 1, 0, 1; 4, 3, 0, 1; 41, 16, 6, 0, 1; 768, 205, 40, 10, 0, 1; 27449, 4608, 615, 80, 15, 0, 1; 1887284, 192143, 16128, 1435, 140, 21, 0, 1;
Programs
-
Mathematica
g=Sum[2^Binomial[n, 2]x^n/n!, {n, 0, 20}]; Transpose[Table[Range[0, 10]! CoefficientList[Series[(x^n/n!)( g/Exp[x]), {x, 0, 10}], x], {n, 0, 8}]]//Grid
Formula
E.g.f. for column k: x^k/k! *A(x)/exp(x) where A(x) is the e.g.f. for A006125.
T(n,n) = 1 (the empty graph). - Geoffrey Critzer, Nov 11 2011
T(n,n-1) = 0. - Geoffrey Critzer, Nov 11 2011
Comments