cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A198302 a(n) = Sum_{d|n} d * sigma(n/d, d).

Original entry on oeis.org

1, 5, 7, 21, 11, 65, 15, 133, 106, 245, 23, 1077, 27, 1041, 1637, 3365, 35, 9992, 39, 18361, 16401, 22841, 47, 134461, 15686, 106917, 179494, 355173, 59, 1220075, 63, 1593189, 1952705, 2228909, 631005, 13778268, 75, 9962313, 20732901, 34805473, 83, 113693883
Offset: 1

Views

Author

Paul D. Hanna, Jan 27 2012

Keywords

Comments

Here sigma(n,k) is the sum of the k-th powers of the divisors of n.
Logarithmic derivative of A198301.

Examples

			L.g.f.: L(x) = x + 5*x^2/2 + 7*x^3/3 + 21*x^4/4 + 11*x^5/5 + 65*x^6/6 + ...
Exponentiation yields the g.f. of A198301: exp(L(x)) = 1 + x + 3*x^2 + 5*x^3 + 12*x^4 + 18*x^5 + 42*x^6 + 62*x^7 + 131*x^8 + 206*x^9 + 398*x^10 + ... + A198301(n)*x^n + ...
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local d; add(d*numtheory:-sigma[d](n/d),d=numtheory:-divisors(n)) end proc:
    map(f, [$1..100]); # Robert Israel, Nov 05 2024
  • Mathematica
    a[n_] := DivisorSum[n, # * DivisorSigma[#, n/#] &]; Array[a, 40] (* Amiram Eldar, Aug 18 2023 *)
  • PARI
    {a(n)=sumdiv(n, d, d*sigma(n/d,d))}
    
  • PARI
    {a(n)=n*polcoeff(sum(m=1,n,sum(k=1,n\m,sigma(m,k)*x^(m*k)/m)+x*O(x^n)),n)}

Formula

L.g.f.: Sum_{n>=1} Sum_{k>=1} sigma(n,k) * x^(n*k)/n.
Showing 1-1 of 1 results.