cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198335 Triangle read by rows: T(n,k) is 1/2 of the number of walks of length k (1<=k<=n-1) in the path graph on n vertices (n>=2).

Original entry on oeis.org

1, 2, 3, 3, 5, 8, 4, 7, 12, 21, 5, 9, 16, 29, 52, 6, 11, 20, 37, 68, 126, 7, 13, 24, 45, 84, 158, 296, 8, 15, 28, 53, 100, 190, 360, 685, 9, 17, 32, 61, 116, 222, 424, 813, 1556, 10, 19, 36, 69, 132, 254, 488, 941, 1812, 3498, 11, 21, 40, 77, 148, 286, 552, 1069, 2068, 4010, 7768
Offset: 2

Views

Author

Emeric Deutsch, Dec 01 2011

Keywords

Comments

Sum of entries in row n is A144952(n) (n>=2).
T(n,n-1)=(1/2)A102699(n).

Examples

			T(3,1)=2 and T(3,2)=3 because in the path a - b - c we have 4 walks of length 1 (ab, bc, ba, cb) and 6 walks of length 2 (aba, abc, bab, bcb, cbc, cba).
Triangle starts:
1;
2,3;
3,5,8;
4,7,12,21;
5,9,16,29,52;
		

References

  • G. Rucker and C. Rucker, Walk counts, labyrinthicity and complexity of acyclic and cyclic graphs and molecules, J. Chem. Inf. Comput. Sci., 40 (2000), 99-106.

Crossrefs

Programs

  • Maple
    with(GraphTheory): T := proc (n, k) local G, A, B: G := PathGraph(n): A := AdjacencyMatrix(G): B := A^k: if k < n then (1/2)*add(add(B[i, j], i = 1 .. n), j = 1 .. n) else 0 end if end proc: for n from 2 to 12 do seq(T(n, k), k = 1 .. n-1) end do; # yields sequence in triangular form

Formula

It is known that if A is the adjacency matrix of a graph G, then the (i,j)-entry of the matrix A^k is equal to the number of walks from vertex i to vertex j. Consequently, T(n,k) is 1/2 of the sum of the entries of the matrix A^k (see the Maple program).

Extensions

Keyword tabl added by Michel Marcus, Apr 09 2013