cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A197737 Decimal expansion of x<0 having x^2+x=cos(x).

Original entry on oeis.org

1, 2, 5, 1, 1, 5, 1, 8, 3, 5, 2, 2, 0, 7, 6, 4, 8, 1, 1, 5, 9, 2, 8, 7, 0, 0, 6, 8, 7, 8, 8, 1, 6, 1, 8, 5, 9, 9, 4, 5, 3, 5, 6, 1, 0, 8, 5, 8, 8, 9, 6, 8, 6, 3, 6, 2, 0, 1, 7, 8, 2, 8, 1, 2, 1, 0, 3, 6, 0, 1, 9, 1, 8, 2, 3, 8, 2, 1, 0, 9, 1, 0, 4, 1, 1, 2, 7, 3, 5, 7, 6, 5, 9, 4, 8, 6, 8, 4, 2
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

For many choices of a,b,c, there are exactly two numbers x having a*x^2+b*x=cos(x).
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... x
1.... 0.... 1.... A125578
1.... 0.... 2.... A197806
1.... 0.... 3.... A197807
1.... 0.... 4.... A197808
1.... 1.... 1.... A197737, A197738
1.... 1.... 2.... A197809, A197810
1.... 1.... 3.... A197811, A197812
1.... 1.... 4.... A197813, A197814
1... -2... -1.... A197815, A197820
1... -3... -1.... A197825, A197831
1... -4... -1.... A197839, A197840
1.... 2.... 1.... A197841, A197842
1.... 2.... 2.... A197843, A197844
1.... 2.... 3.... A197845, A197846
1.... 2.... 4.... A197847, A197848
1... -2... -2.... A197849, A197850
1... -3... -2.... A198098, A198099
1... -4... -2.... A198100, A198101
1.... 3.... 1.... A198102, A198103
1.... 3.... 2.... A198104, A198105
1.... 3.... 3.... A198106, A198107
1.... 3.... 4.... A198108, A198109
1... -2... -3.... A198140, A198141
1... -3... -3.... A198142, A198143
1... -4... -3.... A198144, A198145
2.... 0.... 1.... A198110
2.... 0.... 3.... A198111
2.... 1.... 1.... A198112, A198113
2.... 1.... 2.... A198114, A198115
2.... 1.... 3.... A198116, A198117
2.... 1.... 4.... A198118, A198119
2.... 1... -1.... A198120, A198121
2... -4... -1.... A198122, A198123
2.... 2.... 1.... A198124, A198125
2.... 2.... 3.... A198126, A198127
2.... 3.... 1.... A198128, A198129
2.... 3.... 2.... A198130, A198131
2.... 3.... 3.... A198132, A198133
2.... 3.... 4.... A198134, A198135
2... -4... -3.... A198136, A198137
3.... 0.... 1.... A198211
3.... 0.... 2.... A198212
3.... 0.... 4.... A198213
3.... 1.... 1.... A198214, A198215
3.... 1.... 2.... A198216, A198217
3.... 1.... 3.... A198218, A198219
3.... 1.... 4.... A198220, A198221
3.... 2.... 1.... A198222, A198223
3.... 2.... 2.... A198224, A198225
3.... 2.... 3.... A198226, A198227
3.... 2.... 4.... A198228, A198229
3.... 3.... 1.... A198230, A198231
3.... 3.... 2.... A198232, A198233
3.... 3.... 4.... A198234, A198235
3.... 4.... 1.... A198236, A198237
3.... 4.... 2.... A198238, A198239
3.... 4.... 3.... A198240, A198241
3.... 4.... 4.... A198138, A198139
3... -4... -1.... A198345, A198346
4.... 0.... 1.... A198347
4.... 0.... 3.... A198348
4.... 1.... 1.... A198349, A198350
4.... 1.... 2.... A198351, A198352
4.... 1.... 3.... A198353, A198354
4.... 1.... 4.... A198355, A198356
4.... 2.... 1.... A198357, A198358
4.... 2.... 3.... A198359, A198360
4.... 3.... 1.... A198361, A198362
4.... 3.... 2.... A198363, A198364
4.... 3.... 3.... A198365, A198366
4.... 3.... 4.... A198367, A198368
4.... 4.... 1.... A198369, A198370
4.... 4.... 3.... A198371, A198372
4... -4... -1.... A198373, A198374
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A197737, take f(x,u,v)=x^2+u*x-v*cos(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			negative: -1.25115183522076481159287006878816185994...
positive:  0.55000934992726156666495361947172926116...
		

Crossrefs

Cf. A197738.

Programs

  • Mathematica
    (* Program 1:  A197738 *)
    a = 1; b = 1; c = 1;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -2, 1}]
    r1 = x /. FindRoot[f[x] == g[x], {x, -1.26, -1.25}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197737 *)
    r1 = x /. FindRoot[f[x] == g[x], {x, .55, .551}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197738 *)
    (* Program 2: implicit surface of x^2+u*x=v*cos(x) *)
    f[{x_, u_, v_}] := x^2 + u*x - v*Cos[x];
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, 0, 20}, {v, u, 20}];
    ListPlot3D[Flatten[t, 1]]  (* for A197737 *)
  • PARI
    A197737_vec(N=150)={localprec(N+10); digits(solve(x=-1.5,-1,x^2+x-cos(x))\.1^N)} \\ M. F. Hasler, Aug 05 2021

A196361 Decimal expansion of the absolute minimum of cos(t) + cos(2t) + cos(3t).

Original entry on oeis.org

1, 3, 1, 5, 5, 6, 5, 1, 5, 4, 7, 2, 0, 4, 4, 9, 4, 1, 2, 3, 5, 2, 2, 7, 0, 7, 5, 0, 9, 4, 3, 5, 1, 1, 9, 6, 2, 2, 2, 1, 1, 7, 8, 3, 0, 6, 7, 2, 5, 0, 7, 9, 6, 7, 6, 3, 9, 1, 7, 9, 0, 4, 1, 5, 3, 4, 8, 4, 2, 5, 2, 5, 0, 4, 6, 7, 1, 1, 0, 5, 7, 0, 1, 6, 0, 1, 0, 1, 8, 5, 9, 4, 5, 6, 3, 6, 3, 1, 5
Offset: 1

Views

Author

Clark Kimberling, Oct 28 2011

Keywords

Comments

The function f(x) = cos(x) + cos(2x) + ... + cos(nx), where n >= 2, attains an absolute minimum at some c between 0 and Pi. Related sequences (with graphs in Mathematica programs):
n x min(f(x))
= ======= =========
2 A140244 -9/8

Examples

			x = 1.2929430585054266652256311954691354...
min(f(x)) = -1.3155651547204494123522707...
		

Crossrefs

Cf. A198670.

Programs

  • Mathematica
    n = 3; f[t_] := Cos[t]; s[t_] := Sum[f[k*t], {k, 1, n}];
    x = N[Minimize[s[t], t], 110]; u = Part[x, 1]
    v = 2 Pi - t /. Part[x, 2]
    RealDigits[u]   (* A196361 *)
    RealDigits[v]   (* A198670 *)
    Plot[s[t], {t, -3 Pi, 3 Pi}]
    -(17 + 7*Sqrt[7])/27 // RealDigits[#, 10, 99]& // First (* Jean-François Alcover, Feb 19 2013 *)
  • PARI
    (17+7*sqrt(7))/27 \\ Charles R Greathouse IV, Feb 07 2025

Formula

Equals (17+7*sqrt(7))/27. [Jonathan Vos Post, Jun 21 2012]

A198362 Decimal expansion of greatest x having 4*x^2+3x=cos(x).

Original entry on oeis.org

2, 4, 4, 0, 4, 5, 3, 2, 2, 6, 2, 9, 1, 3, 5, 5, 9, 1, 4, 6, 6, 8, 5, 8, 2, 8, 2, 9, 3, 9, 4, 4, 8, 0, 7, 9, 4, 9, 3, 2, 8, 4, 3, 7, 5, 3, 3, 7, 6, 0, 8, 7, 5, 4, 6, 7, 2, 2, 2, 3, 1, 3, 5, 5, 5, 6, 1, 9, 0, 4, 2, 7, 8, 6, 2, 9, 9, 9, 9, 7, 3, 4, 9, 3, 8, 4, 1, 6, 5, 2, 3, 1, 4, 6, 8, 5, 1, 7, 4
Offset: 0

Views

Author

Clark Kimberling, Oct 24 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.91615106109683577000135072803946391...
greatest x: 0.244045322629135591466858282939448079493...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 4; b = 3; c = 1;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -1, 1}]
    r1 = x /. FindRoot[f[x] == g[x], {x, -1, -.9}, WorkingPrecision -> 110]
    RealDigits[r1] (* A198361 *)
    r2 = x /. FindRoot[f[x] == g[x], {x, .24, .25}, WorkingPrecision -> 110]
    RealDigits[r2] (* A198362 *)
Showing 1-3 of 3 results.