A198391 Numbers m such that Sum_{i=1..k} (1-1/p_i) + Product_{i=1..k} (1-1/p_i) is an integer, where p_i are the k prime factors of m (with multiplicity).
2, 15, 20, 272, 476, 19024, 47425, 65792, 125172, 216900, 539280, 1222976, 1372736, 2770496, 3494336, 5321808, 5844528, 6177168, 7032528, 8885808, 20670768, 60727876, 69081344, 82724356, 95579136, 544382208, 907440192, 1657497600, 4295032832, 5048574976
Offset: 1
Keywords
Examples
125172 has prime factors 2, 2, 3, 3, 3, 19, 61. 1 - 1/2 + 1 - 1/2 + 1 - 1/3 + 1 - 1/3 + 1 - 1/3 + 1 - 1/19 + 1 - 1/61 = 5715/1159 is the sum over the 1-1/p_i. (1-1/2) * (1-1/2) * (1-1/3) * (1-1/3) * (1-1/3) * (1-1/19) * (1-1/61) = 80/1159 is the product of the 1-1/p_i. The sum over sum and product is 5715/1159 + 80/1159 = 5, an integer.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..48 (terms < 10^12)
- J. M. Borwein and E. Wong, A survey of results relating to Giuga’s conjecture on primality, May 8, 1995.
- Romeo Mestrovic, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
Programs
-
Maple
isA198391 := proc(n) p := ifactors(n)[2] ; add(op(2,d)-op(2,d)/op(1,d),d=p) + mul((1-1/op(1,d))^op(2,d),d=p) ; type(%,'integer') ; end proc: for n from 2 to 20000000 do if isA198391(n) then printf("%d,\n",n); end if; end do: # R. J. Mathar, Nov 26 2011
-
Mathematica
Select[Range[2, 10^5], IntegerQ[(Plus @@ # + Times @@ #) &@ (1 - 1/ Flatten[ Table[#1, {#2}] & @@@ FactorInteger@#])] &] (* Giovanni Resta, May 23 2016 *)
Extensions
Missing a(23) and a(26)-a(30) from Giovanni Resta, May 23 2016
Comments