A199767 Numbers m for which Sum_{i=1..k} (1+1/p_i) + Product_{i=1..k} (1+1/p_i) is an integer, where p_i are the k prime factors of m (with multiplicity).
21, 45, 432, 740, 1728, 3456, 3888, 5616, 12096, 23760, 46656, 52164, 131328, 152064, 186624, 195656, 233280, 311472, 606528, 618192, 746496, 926208, 933120, 979776, 1273536, 1403136, 2985984, 3221456, 3732480, 5178816, 5412096, 5971968, 9704448, 13651200
Offset: 1
Examples
740 has prime factors 2, 2, 5, 37. 1 + 1/2 + 1 + 1/2 + 1 + 1/5 + 1 + 1/37 = 967/185 is the sum over 1+1/p_i. (1+1/2) * (1+1/2) * (1+1/5) * (1+1/37) = 513/185 is the product over 1+1/p_i. 967/185 + 513/185 = 8 is an integer.
Links
- J. M. Borwein and E. Wong, A survey of results relating to Giuga’s conjecture on primality, May 8, 1995.
- Romeo Mestrovic, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
Programs
-
Maple
isA199767 := proc(n) p := ifactors(n)[2] ; add(op(2,d)+op(2,d)/op(1,d),d=p) + mul((1+1/op(1,d))^op(2,d),d=p) ; type(%,'integer') ; end proc: for n from 20 do if isA199767(n) then printf("%d,\n",n); end if; end do: # R. J. Mathar, Nov 23 2011
Comments