cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A198391 Numbers m such that Sum_{i=1..k} (1-1/p_i) + Product_{i=1..k} (1-1/p_i) is an integer, where p_i are the k prime factors of m (with multiplicity).

Original entry on oeis.org

2, 15, 20, 272, 476, 19024, 47425, 65792, 125172, 216900, 539280, 1222976, 1372736, 2770496, 3494336, 5321808, 5844528, 6177168, 7032528, 8885808, 20670768, 60727876, 69081344, 82724356, 95579136, 544382208, 907440192, 1657497600, 4295032832, 5048574976
Offset: 1

Views

Author

Paolo P. Lava, Oct 24 2011

Keywords

Comments

The numbers of the sequence are solutions of the differential equation m’=(k-a)*m+b, which can be written as A003415(m)=(k-a)*m+A003958(m), where k is the number of prime factors of m, and a is the integer Sum_{i=1..k} (1-1/p_i) + Product_{i=1..k} (1-1/p_i).
If k = a we have m’ = b or A003415(m) = A003958(m). For instance 15 has prime factors 3, 5; its arithmetic derivative is 15’ = 8 and b = 3*5 - 3 - 5 + 1 = 8. The term 47425 has prime factors 5, 5, 7, 271. Its arithmetic derivative is 47425’ = 25920 and b = 5*5*7*271 - 5*5*7 - 5*5*271 - 5*7*271 - 5*7*271 + 5*5 + 5*7 + 5*271 + 5*7 + 5*271 + 7*271 - 5 - 5 - 7 - 271 + 1 = 25920.
The numbers of the sequence satisfy also Sum_{i=1..k} (1+1/p_i) - Product_{i=1..k} (1-1/p_i) = some integer.

Examples

			125172 has prime factors 2, 2, 3, 3, 3, 19, 61. 1 - 1/2 + 1 - 1/2 + 1 - 1/3 + 1 - 1/3 + 1 - 1/3 + 1 - 1/19 + 1 - 1/61 = 5715/1159 is the sum over the 1-1/p_i. (1-1/2) * (1-1/2) * (1-1/3) * (1-1/3) * (1-1/3) * (1-1/19) * (1-1/61) = 80/1159 is the product of the 1-1/p_i. The sum over sum and product is 5715/1159 + 80/1159 = 5, an integer.
		

Crossrefs

Programs

  • Maple
    isA198391 := proc(n)
        p := ifactors(n)[2] ;
        add(op(2,d)-op(2,d)/op(1,d),d=p) + mul((1-1/op(1,d))^op(2,d),d=p) ;
        type(%,'integer') ;
    end proc:
    for n from 2 to 20000000 do
        if isA198391(n) then
            printf("%d,\n",n);
        end if;
    end do: # R. J. Mathar, Nov 26 2011
  • Mathematica
    Select[Range[2, 10^5], IntegerQ[(Plus @@ # + Times @@ #) &@ (1 - 1/ Flatten[ Table[#1, {#2}] & @@@ FactorInteger@#])] &] (* Giovanni Resta, May 23 2016 *)

Extensions

Missing a(23) and a(26)-a(30) from Giovanni Resta, May 23 2016

A224912 Numbers m for which Sum_{i=1..k} (p(i)/(p(i)-1)) + Product_{i=1..k} (p(i)/(p(i)-1)) is an integer, where p(i) are the k prime factors of m (with multiplicity).

Original entry on oeis.org

2, 3, 4, 8, 16, 32, 36, 64, 72, 108, 128, 144, 200, 256, 288, 396, 512, 528, 576, 588, 1024, 1040, 1152, 1296, 2000, 2048, 2304, 2320, 2400, 2592, 3888, 4096, 4160, 4608, 4752, 4800, 5184, 5600, 6552, 7200, 8192, 8448, 9216, 9600, 9936, 10368, 11316, 12000
Offset: 1

Views

Author

Paolo P. Lava, Apr 19 2013

Keywords

Comments

Apart from 3 all terms are even.

Examples

			Prime factors of 11316 are 2^2, 3, 23 and 41.
Sum_{i=1..5} (p(i)/(p(i)-1)) = 2*(2/(2-1)) + 3/(3-1) + 23/(23-1) + 41/(41-1) = 3331/440.
Sroduct_{i=1..5} (p(i)/(p(i)-1)) = 2*(2/(2-1)) * 3/(3-1) * 23/(23-1) * 41/(41-1) = 2829/440.
Their sum is an integer: 3331/440 + 2829/440 = 14.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A224912:=proc(i) local b,c,d,n,p;
    for n from 2 to i do p:=ifactors(n)[2];
      b:=add(op(2,d)*op(1,d)/(op(1,d)-1),d=p)+mul((op(1,d)/(op(1,d)-1))^op(2,d),d=p);
      if trunc(b)=b then print(n); fi; od; end:
    A224912(10^6);

A230110 Composite numbers m such that Sum_{i=1..k} (p_i/(p_i+1)) + Product_{i=1..k} (p_i/(p_i-1)) is an integer, where p_i are the k prime factors of m (with multiplicity).

Original entry on oeis.org

8, 10, 30, 63, 64, 512, 588, 720, 800, 1320, 3960, 4096, 5184, 5760, 6400, 7200, 21600, 27720, 27900, 32768, 35280, 41472, 46080, 51200, 70840, 84672, 92400, 95040, 105600, 151200, 188160, 262144, 331776, 368640, 376320, 409600, 504000, 518400, 576000, 640000
Offset: 1

Views

Author

Paolo P. Lava, Oct 09 2013

Keywords

Comments

Includes 2^(3*a) * 3^(4*b) if 3*a >= 4*b. - Robert Israel, Mar 30 2023

Examples

			Prime factors of 3960 are 2^3, 3^2, 5 and 11.
Sum_{i=1..7} (p(i)/(p(i)+1)) = 3*(2/(2+1)) + 2*(3/(3+1)) + 5/(5+1) + 11/(11+1) = 21/4.
Product_{i=1..7} (p(i)/(p(i)-1)) = (2/(2+1))^3 * (3/(3-1))^2 * 5/(5-1) * 11/(11-1) = 99/4.
Their sum is an integer: 21/4 + 99/4 = 30.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(i) local b,d,n,p;
    for n from 2 to i do p:=ifactors(n)[2];
    b:=add(op(2,d)*op(1,d)/(op(1,d)+1),d=p)+mul((op(1,d)/(op(1,d)-1))^op(2,d),d=p);
    if trunc(b)=b then print(n); fi; od; end: P(10^7);

A226365 Composite numbers such that Sum_{i=1..k} (1 + 1/p_i) - Product_{i=1..k} (1 + 1/p_i) is an integer, where p_i are the k prime factors of n (with multiplicity).

Original entry on oeis.org

152, 432, 1620, 1728, 3456, 4752, 22464, 46656, 80892, 139968, 186624, 237168, 326592, 746496, 1651968, 2052864, 2426112, 2985984, 5971968, 10257408, 12177216, 12690432, 14048240, 14183424, 20155392, 20901888, 26127360, 38817792
Offset: 1

Views

Author

Paolo P. Lava, Jun 12 2013

Keywords

Comments

The numbers of the sequence are the solution of the differential equation n' = (a-k)*n + b, which can also be written as A003415(n) = (a-k)*n + A003958(n), where k is the number of prime factors of n, and a is the integer Sum_{i=1..k} (1 + 1/p_i) - Product_{1=1..k} (1 + 1/p_i).
The numbers of the sequence satisfy also Sum_{i=1..k} (1 - 1/p_i) + Product_{i=1..k} (1 + 1/p_i) = some integer.

Examples

			237168 has prime factors 2, 2, 2, 2, 3, 3, 3, 3, 3, 61. 4*(1 + 1/2) + 5*(1 + 1/3) + (1 + 1/61) = 2504/183 is the sum over the 1 + 1/p_i. (1 + 1/2)^4 * (1 + 1/3)^5 * (1 + 1/61) = 3968/183 is the product of the 1 + 1/p_i. The difference over sum and product is 2504/183 - 3968/183 = -8, an integer.
		

Crossrefs

Programs

  • Maple
    with(numtheory); ListA226365:=proc(q) local a,d,n,p;
    for n from 1 to q do if not isprime(n) then p:=ifactors(n)[2];
    a:=add(op(2,d)+op(2,d)/op(1,d),d=p)-mul((1+1/op(1,d))^op(2,d),d=p);
    if type(a,integer) then print(n); fi; fi;
    od; end: ListA226365(10^9);

A230111 Composite numbers m such that Sum_{i=1..k} (p_i/(p_i+1)) - Product_{i=1..k} (p_i/(p_i-1)) is an integer, where p_i are the k prime factors of m (with multiplicity).

Original entry on oeis.org

8, 10, 64, 512, 720, 800, 1320, 1944, 4096, 5184, 5760, 6400, 7200, 8370, 23520, 32768, 41472, 44000, 46080, 47040, 51200, 69580, 74088, 76096, 84672, 93000, 95040, 105600, 129360, 235200, 240000, 262144, 331776, 368640, 409600, 518400, 546480, 576000, 640000
Offset: 1

Views

Author

Paolo P. Lava, Oct 09 2013

Keywords

Examples

			Prime factors of 7200 are 2^5, 3^2 and 5^2.
Sum_{i=1..9} (p(i)/(p(i)+1)) = 5*(2/(2+1)) + 2*(3/(3+1)) + 2*(5/(5+1)) = 13/2.
Product_{i=1..9} (p(i)/(p(i)-1)) = (2/(2+1))^5 * (3/(3-1))^2 * (5/(5-1))^2 = 225/2.
Their sum is an integer: 13/2 - 225/2 = -106.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(i) local b,d,n,p;
    for n from 2 to i do p:=ifactors(n)[2];
    b:=add(op(2,d)*op(1,d)/(op(1,d)+1),d=p)-mul((op(1,d)/(op(1,d)-1))^op(2,d),d=p);
    if trunc(b)=b then print(n); fi; od; end: P(10^7);

A230112 Composite numbers m such that Product_{i=1..k} (p_i/(p_i-1)) / Sum_{i=1..k} (p_i/(p_i+1)) is an integer, where p_i are the k prime factors of m (with multiplicity).

Original entry on oeis.org

4, 8, 16, 64, 256, 720, 800, 2200, 4096, 25600, 33600, 36288, 41472, 46080, 65536, 92400, 104960, 235200, 282240, 338688, 376320, 403200, 419840, 535680, 556640, 576000, 580800, 640000, 844800, 979776, 1088640, 1244160, 1354752, 1382400, 1505280, 1689600, 1995840
Offset: 1

Views

Author

Paolo P. Lava, Oct 09 2013

Keywords

Examples

			Prime factors of 2200 are 2^3, 5^2 and 11.
Sum_{i=1..6} (p(i)/(p(i)+1)) = 3*(2/(2+1)) + 2*(5/(5+1)) + 11/(11+1) = 55/12.
Product_{i=1..6} (p(i)/(p(i)-1)) = (2/(2-1))^3*(5/(5-1))^2*11/(11-1) = 55/4.
The ratio is an integer: (55/4) / (55/12) = 3.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a, d, n, p;
    for n from 2 to q do if not isprime(n) then p:=ifactors(n)[2];
    a:=mul((op(1, d)/(op(1, d)-1))^op(2, d), d=p)/add((op(1, d)/(op(1, d)+1))*op(2, d), d=p); if type(a, integer) then print(n); fi; fi;
    od; end: P(10^7);
Showing 1-6 of 6 results.