A198414 Decimal expansion of x > 0 satisfying x^2 = 2*sin(x).
1, 4, 0, 4, 4, 1, 4, 8, 2, 4, 0, 9, 2, 4, 3, 4, 3, 6, 4, 1, 4, 8, 3, 2, 7, 9, 4, 3, 7, 4, 5, 7, 5, 8, 6, 0, 3, 7, 2, 5, 7, 1, 6, 1, 3, 7, 0, 4, 9, 1, 1, 4, 8, 1, 0, 9, 4, 4, 8, 2, 4, 3, 5, 4, 8, 7, 7, 5, 2, 5, 2, 9, 5, 6, 1, 7, 1, 4, 4, 3, 6, 2, 1, 2, 0, 5, 1, 0, 1, 5, 2, 4, 8, 2, 0, 8, 1, 7, 5
Offset: 1
Examples
1.4044148240924343641483279437457586037...
Crossrefs
Cf. A197737.
Programs
-
Mathematica
(* Program 1: A198414 *) a = 1; b = 0; c = 2; f[x_] := a*x^2 + b*x; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 2}] r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.41}, WorkingPrecision -> 110] RealDigits[r] (* A198414 *) (* Program 2: an implicit surface of x^2+u*x=v*sin(x) *) f[{x_, u_, v_}] := x^2 + u*x - v*Sin[x]; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .01, 6}]}, {u, .1, 100}, {v, u, 100}]; ListPlot3D[Flatten[t, 1]]
Extensions
Edited by Georg Fischer, Aug 01 2021
Comments