A198440 Square root of second term of a triple of squares in arithmetic progression that is not a multiple of another triple in (A198384, A198385, A198386).
5, 13, 17, 25, 29, 37, 41, 61, 53, 65, 65, 85, 73, 85, 89, 101, 113, 97, 109, 125, 145, 145, 149, 137, 181, 157, 173, 197, 185, 169, 221, 185, 193, 205, 229, 257, 265, 205, 221, 233, 241, 269, 313, 265, 293, 325, 277, 317, 281, 365, 289, 305, 305, 365, 401
Offset: 1
Keywords
Examples
From _Wolfdieter Lang_, May 22 2013: (Start) Primitive Pythagorean triangle (x,y,z), even y, connection: a(8) = 61 because the leg sum x+y = A198441(8) = 71 and due to A198439(8) = 49 one has y = (71+49)/2 = 60 is even, hence x = (71-49)/2 = 11 and z = sqrt(11^2 + 60^2) = 61. (End)
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
- Keith Conrad, Arithmetic progressions of three squares
- Reinhard Zumkeller, Table of initial values
Programs
-
Haskell
a198440 n = a198440_list !! (n-1) a198440_list = map a198389 a198409_list
-
Mathematica
wmax = 1000; triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]]; tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2]; DeleteCases[tt, t_List /; GCD@@t > 1 && MemberQ[tt, t/GCD@@t]][[All, 2]] (* Jean-François Alcover, Oct 22 2021 *)
Comments