cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198440 Square root of second term of a triple of squares in arithmetic progression that is not a multiple of another triple in (A198384, A198385, A198386).

Original entry on oeis.org

5, 13, 17, 25, 29, 37, 41, 61, 53, 65, 65, 85, 73, 85, 89, 101, 113, 97, 109, 125, 145, 145, 149, 137, 181, 157, 173, 197, 185, 169, 221, 185, 193, 205, 229, 257, 265, 205, 221, 233, 241, 269, 313, 265, 293, 325, 277, 317, 281, 365, 289, 305, 305, 365, 401
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2011

Keywords

Comments

This sequence gives the hypotenuses of primitive Pythagorean triangles (with multiplicities) ordered according to nondecreasing values of the leg sums x+y (called w in the Zumkeller link, given by A198441). See the comment on the equivalence to primitive Pythagorean triangles in A198441. For the values of these hypotenuses ordered nondecreasingly see A020882. See also the triangle version A222946. - Wolfdieter Lang, May 23 2013

Examples

			From _Wolfdieter Lang_, May 22 2013: (Start)
Primitive Pythagorean triangle (x,y,z), even y, connection:
a(8) = 61 because the leg sum x+y = A198441(8) = 71 and due to A198439(8) = 49 one has y = (71+49)/2 = 60 is even, hence x = (71-49)/2 = 11 and z = sqrt(11^2 + 60^2) = 61. (End)
		

Crossrefs

Programs

  • Haskell
    a198440 n = a198440_list !! (n-1)
    a198440_list = map a198389 a198409_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]];
    tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];
    DeleteCases[tt, t_List /; GCD@@t > 1 && MemberQ[tt, t/GCD@@t]][[All, 2]] (* Jean-François Alcover, Oct 22 2021 *)

Formula

A198436(n) = a(n)^2; a(n) = A198389(A198409(n)).