cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198469 a(n) is the smallest prime(m) such that the interval (prime(m)*n, prime(m+1)*n) contains exactly seven primes.

Original entry on oeis.org

1129, 113, 139, 139, 23, 47, 7, 7, 37, 67, 67, 37, 127, 3, 3, 5, 41, 11, 17, 5, 5, 5, 29, 71, 11, 101, 2, 2, 2, 101, 107, 2, 2, 71, 71, 191, 191, 227, 239, 281, 2, 197, 227, 107, 29, 569, 281, 821, 599, 1031, 521, 641, 659, 1229, 569, 1061, 1481, 2657, 641
Offset: 2

Views

Author

Keywords

Comments

The sequence is unbounded.
Conjecture. In the supposition that there are infinitely many twin primes, every term beginning with the 15th is 2 or in A001359 (lesser of twin primes).
A generalization. Consider sequence A_r: "A_r(n) is the smallest prime(m) such that the interval (prime(m)*n, prime(m+1)*n) contains exactly r>=0 primes". Then the sequence is unbounded and, in the supposition that there are infinitely many twin primes, we conjecture that there exists number N=N(r)>=2, such that for n>=N every term A_r(n) is 2 or in A001359.
Proof of unboundedness. If the sequence is bounded,then for some k and for arbitrary n, a(n) is in the set {p_1,p_2,...,p_k}, where p_i=prime(i). This means that for all n there exists p_i<=p_k such that interval (n*p_i, n*p_(i+1)) contains exactly r primes. However, from the PNT it evidently follows that pi(n*p_(i+1))-pi(n*p_i) tends to infinity as n goes to infinity, i.e., for sufficiently large n we obtain a contradiction for every i<=k.
Note that from these arguments it follows more: for every fixed r>=0, A_r(n) tends to infinity as n goes to infinity. Thus a fixed prime which is in the sequence can repeat only a finite number of times.
In addition, note that the condition "in the supposition that there are infinitely many twin primes" means that, if after a large number N_(tw) there are no twin primes, then this sequence, existing after N_(tw), of course, cannot have any term in A001359.

Examples

			Let n=20, and consider intervals of the form (20*prime(m), 20*prime(m+1)).
For 2, 3, 5, ..., the intervals (40,60), (60,100), (100,140), (140,220), (220,260), (260,340), (340,380), ... contain 5, 8, 9, 13, 8, 13, 7, ... primes. Hence the smallest such prime is 17.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Catch[ For[m = 1, True, m++, p = Prime[m]; If[PrimePi[n*Prime[m + 1]] - PrimePi[n*p] == 7, Throw[p]]]]; Table[a[n], {n, 2, 60}] (* Jean-François Alcover, Jan 18 2013 *)