A198632 Triangle version of the array of the number of closed paths of even length on the graph P_n (n vertices, n-1 edges).
1, 0, 2, 0, 2, 3, 0, 2, 4, 4, 0, 2, 8, 6, 5, 0, 2, 16, 14, 8, 6, 0, 2, 32, 36, 20, 10, 7, 0, 2, 64, 94, 56, 26, 12, 8, 0, 2, 128, 246, 164, 76, 32, 14, 9, 0, 2, 256, 644, 488, 234, 96, 38, 16, 10, 0, 2, 512, 1686, 1460, 740, 304, 116, 44, 18, 11, 0, 2, 1024, 4414, 4376, 2372, 992, 374, 136, 50, 20, 12, 0, 2, 2048, 11556, 13124, 7654, 3296, 1244, 444, 156, 56, 22, 13
Offset: 0
Examples
The array w(n,2*k) is n\k 0 1 2 3 4 5 6 7 8 9 ... 1: 1 0 0 0 0 0 0 0 0 0 2: 2 2 2 2 2 2 2 2 2 2 3: 3 4 8 16 32 64 128 256 512 1024 4: 4 6 14 36 94 246 644 1686 4414 11556 5: 5 8 20 56 164 488 1460 4376 13124 39368 6: 6 10 26 76 234 740 2372 7654 24778 80338 7: 7 12 32 96 304 992 3296 11072 37440 127104 8: 8 14 38 116 374 1244 4220 14504 50294 175454 9: 9 16 44 136 444 1496 5144 17936 63164 224056 ... The triangle is k\n 1 2 3 4 5 6 7 8 9 10 11 12 ... 0: 1 1: 0 2 2: 0 2 3 3: 0 2 4 4 4: 0 2 8 6 5 5: 0 2 16 14 8 6 6: 0 2 32 36 20 10 7 7: 0 2 64 94 56 26 12 8 8: 0 2 128 246 164 76 32 14 9 9: 0 2 256 644 488 234 96 38 16 10 10: 0 2 512 1686 1460 740 304 116 44 18 11 11: 0 2 1024 4414 4376 2372 992 374 136 50 20 12 ... n=3, l=2*k = 4: graph P_3 as 1-2-3, with eight walks of length 4, namely 12121, 12321, 21212, 23232, 21232, 23212, 32323 and 32123.
Links
- S. Barbero, Dickson Polynomials, Chebyshev Polynomials, and Some Conjectures of Jeffery, Journal of Integer Sequences, 17 (2014), #14.3.8.
- S. Barbero, U. Cerruti, N. Murru, Identities Involving Zeros of Ramanujan and Shanks Cubic Polynomials, J. Integer Seq., Vol. 16 (2013), Article 13.8.1.
- Carlos M. da Fonseca, M. Lawrence Glasser, Victor Kowalenko, Basic trigonometric power sums with applications, arXiv:1601.07839 [math.NT], 2016. See Theorem 5.1.
- W. Lang, On sums of powers of zeros of polynomials, J. Comp. Appl. Math., 89 (1998) 237-256.
Formula
a(k,n)=w(n,2*(k-n+2)), the total number of closed walks (paths) of length 2*(k-n+2) on the graph P_n, which looks like o-o-o...-o, with n vertices (nodes) and n-1 edges (lines), k+1>=n>=1.
O.g.f. G(n,x) for w(n,l), which vanishes for odd l, is
((n+1)*coth((n+1)*log((2*x)/(1-sqrt(1-(2*x)^2)))) - 1/sqrt(1-(2*x)^2))/sqrt(1-(2*x)^2). See the comment above for a version with Chebyshev S-polynomials.
Conjecture: For the array w(n,2*k) in the example below, w(2*q,2*k)/2 = A185095(q,k), q >= 1, k >= 0. - L. Edson Jeffery, Nov 23 2013
Comments