cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A198755 Decimal expansion of x>0 satisfying x^2+cos(x)=2.

Original entry on oeis.org

1, 3, 2, 5, 6, 2, 2, 5, 1, 8, 1, 4, 7, 5, 3, 6, 6, 2, 3, 4, 8, 3, 2, 2, 9, 0, 2, 9, 3, 8, 7, 9, 8, 7, 4, 4, 3, 3, 0, 4, 5, 4, 6, 7, 2, 5, 6, 5, 7, 6, 6, 4, 9, 5, 2, 6, 2, 7, 4, 0, 1, 8, 5, 3, 2, 0, 0, 8, 9, 5, 0, 6, 1, 6, 5, 9, 3, 0, 2, 4, 6, 5, 0, 3, 4, 1, 1, 0, 9, 7, 5, 9, 7, 7, 5, 7, 5, 6, 7
Offset: 1

Views

Author

Clark Kimberling, Oct 30 2011

Keywords

Comments

For many choices of a,b,c, there is a unique x>0 satisfying a*x^2+b*cos(x)=c.
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c..... x
1.... 1.... 2..... A198755
1.... 1.... 3..... A198756
1.... 1.... 4..... A198757
1.... 2.... 3..... A198758
1.... 2.... 4..... A198811
1.... 3.... 3..... A198812
1.... 3.... 4..... A198813
1.... 4.... 3..... A198814
1.... 4.... 4..... A198815
1.... 1.... 0..... A125578
1... -1.... 1..... A198816
1... -1.... 2..... A198817
1... -1.... 3..... A198818
1... -1.... 4..... A198819
1... -2.... 1..... A198821
1... -2.... 2..... A198822
1... -2.... 3..... A198823
1... -2.... 4..... A198824
1... -2... -1..... A198825
1... -3.... 0..... A197807
1... -3.... 1..... A198826
1... -3.... 2..... A198828
1... -3.... 3..... A198829
1... -3.... 4..... A198830
1... -3... -1..... A198835
1... -3... -2..... A198836
1... -4.... 0..... A197808
1... -4.... 1..... A198838
1... -4.... 2..... A198839
1... -4.... 3..... A198840
1... -4.... 4..... A198841
1... -4... -1..... A198842
1... -4... -2..... A198843
1... -4... -3..... A198844
2.... 0.... 1..... A010503
2.... 0.... 3..... A115754
2.... 1.... 2..... A198820
2.... 1.... 3..... A198827
2.... 1.... 4..... A198837
2.... 2.... 3..... A198869
2.... 3.... 4..... A198870
2... -1.... 1..... A198871
2... -1.... 2..... A198872
2... -1.... 3..... A198873
2... -1.... 4..... A198874
2... -2... -1..... A198875
2... -2.... 3..... A198876
2... -3... -2..... A198877
2... -3... -1..... A198878
2... -3.... 1..... A198879
2... -3.... 2..... A198880
2... -3.... 3..... A198881
2... -3.... 4..... A198882
2... -4... -3..... A198883
2... -4... -1..... A198884
2... -4.... 1..... A198885
2... -4.... 3..... A198886
3.... 0.... 1..... A020760
3.... 1.... 2..... A198868
3.... 1.... 3..... A198917
3.... 1.... 4..... A198918
3.... 2.... 3..... A198919
3.... 2.... 4..... A198920
3.... 3.... 4..... A198921
3... -1.... 1..... A198922
3... -1.... 2..... A198924
3... -1.... 3..... A198925
3... -1.... 4..... A198926
3... -2... -1..... A198927
3... -2.... 1..... A198928
3... -2.... 2..... A198929
3... -2.... 3..... A198930
3... -2.... 4..... A198931
3... -3... -1..... A198932
3... -3.... 1..... A198933
3... -3.... 2..... A198934
3... -3.... 4..... A198935
3... -4... -3..... A198936
3... -4... -2..... A198937
3... -4... -1..... A198938
3... -4.... 1..... A198939
3... -4.... 2..... A198940
3... -4.... 3..... A198941
3... -4.... 4..... A198942
4.... 1.... 2..... A198923
4.... 1.... 3..... A198983
4.... 1.... 4..... A198984
4.... 2.... 3..... A198985
4.... 3.... 4..... A198986
4... -1.... 1..... A198987
4... -1.... 2..... A198988
4... -1.... 3..... A198989
4... -1.... 4..... A198990
4... -2... -1..... A198991
4... -2.... 1..... A198992
4... -2... -3..... A198993
4... -3... -2..... A198994
4... -3... -1..... A198995
4... -2.... 1..... A198996
4... -3.... 2..... A198997
4... -3.... 3..... A198998
4... -3.... 4..... A198999
4... -4... -3..... A199000
4... -4... -1..... A199001
4... -4.... 1..... A199002
4... -4.... 3..... A199003
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A198755, take f(x,u,v)=x^2+u*cos(x)-v and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			1.32562251814753662348322902938798744330...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1:  A198655 *)
    a = 1; b = 1; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.32, 1.33}, WorkingPrecision -> 110]
    RealDigits[r] (* A198755 *)
    (* Program 2: implicit surface of x^2+u*cos(x)=v *)
    f[{x_, u_, v_}] := x^2 + u*Cos[x] - v;
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 3}]}, {u, -5, 4}, {v, u, 20}];
    ListPlot3D[Flatten[t, 1]]  (* for A198755 *)

A211694 Number of partitions of [n] that contain no isolated singletons.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 6, 11, 23, 47, 103, 226, 518, 1200, 2867, 6946, 17234, 43393, 111419, 290242, 768901, 2065172, 5630083, 15549403, 43527487, 123343911, 353864422, 1026935904, 3014535166, 8945274505, 26829206798, 81293234754, 248805520401, 768882019073, 2398686176048, 7552071250781
Offset: 0

Views

Author

R. H. Hardin, Apr 19 2012

Keywords

Comments

Number of nonnegative integer arrays of length n with new values introduced in order 0 upwards and every value appearing only in runs of at least 2.
Column 2 of A211700.

Examples

			All solutions for n = 7:
  0    0    0    0    0    0    0    0    0    0    0
  0    0    0    0    0    0    0    0    0    0    0
  0    0    1    0    1    0    0    0    1    1    1
  1    1    1    1    1    0    0    0    1    1    1
  1    1    2    1    1    0    1    0    0    1    1
  2    1    2    0    2    0    1    1    0    1    0
  2    1    2    0    2    0    1    1    0    1    0
		

Crossrefs

Programs

  • Maple
    f:=proc(n) local j;
    add(combinat:-bell(j-1)*binomial(n-j-1, j-1), j=0..floor(n/2));
    end;
    [seq(f(n), n=0..100)]; # N. J. A. Sloane, May 19 2018
  • Mathematica
    a[n_] := If[n == 0, 1, Sum[BellB[j-1]*Binomial[n-j-1, j-1], {j, 1, Floor[n/2]}]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 17 2024, after Maple code *)

Formula

G.f.: 1+x^2/W(0), where W(k) = 1 - x - x^2/(1 - x^2*(k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 10 2014

Extensions

Edited by Andrey Zabolotskiy, Feb 07 2025
Showing 1-2 of 2 results.