A196361 Decimal expansion of the absolute minimum of cos(t) + cos(2t) + cos(3t).
1, 3, 1, 5, 5, 6, 5, 1, 5, 4, 7, 2, 0, 4, 4, 9, 4, 1, 2, 3, 5, 2, 2, 7, 0, 7, 5, 0, 9, 4, 3, 5, 1, 1, 9, 6, 2, 2, 2, 1, 1, 7, 8, 3, 0, 6, 7, 2, 5, 0, 7, 9, 6, 7, 6, 3, 9, 1, 7, 9, 0, 4, 1, 5, 3, 4, 8, 4, 2, 5, 2, 5, 0, 4, 6, 7, 1, 1, 0, 5, 7, 0, 1, 6, 0, 1, 0, 1, 8, 5, 9, 4, 5, 6, 3, 6, 3, 1, 5
Offset: 1
Examples
x = 1.2929430585054266652256311954691354... min(f(x)) = -1.3155651547204494123522707...
Links
- Idris Mercer, On a function related to Chowla's cosine problem, arXiv:1206.5012v1 [math.CA], June 21 2012.
- Index entries for algebraic numbers, degree 2.
Crossrefs
Cf. A198670.
Programs
-
Mathematica
n = 3; f[t_] := Cos[t]; s[t_] := Sum[f[k*t], {k, 1, n}]; x = N[Minimize[s[t], t], 110]; u = Part[x, 1] v = 2 Pi - t /. Part[x, 2] RealDigits[u] (* A196361 *) RealDigits[v] (* A198670 *) Plot[s[t], {t, -3 Pi, 3 Pi}] -(17 + 7*Sqrt[7])/27 // RealDigits[#, 10, 99]& // First (* Jean-François Alcover, Feb 19 2013 *)
-
PARI
(17+7*sqrt(7))/27 \\ Charles R Greathouse IV, Feb 07 2025
Formula
Equals (17+7*sqrt(7))/27. [Jonathan Vos Post, Jun 21 2012]
Comments