A198683 Number of distinct values taken by i^i^...^i (with n i's and parentheses inserted in all possible ways) where i = sqrt(-1) and ^ denotes the principal value of the exponential function.
1, 1, 2, 3, 7, 15, 34, 77, 187, 462, 1152
Offset: 1
Examples
a(1) = 1: there is one value, i. a(2) = 1: there is one value, i^i = exp(i Pi / 2)^i = exp(-Pi/2) = 0.2079... a(3) = 2: there are two values: (i^i)^i = i^(-1) = 1/i = -i and i^(i^i) = i^0.2079... = exp(0.2079... i Pi / 2) = 0.9472... + 0.3208... i. a(4) = 3: there are 5 possible parenthesizations but they give only 3 distinct values: i^(i^(i^i)), i^((i^i)^i) = ((i^i)^i)^i, (i^i)^(i^i) = (i^(i^i))^i.
Links
- R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis, Amer. Math. Monthly 80 (8) (1973), 868-876.
- R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis (annotated cached copy)
- MathOverflow, Discussion of related questions
- Jon E. Schoenfield, Tables for n = 1..11 listing all A000108(n-1) ways of inserting the parentheses and identifying the ways that do not yield duplicated values
Programs
-
Mathematica
iParens[1] = {I}; iParens[n_] := iParens[n] = Union[Flatten[Table[Outer[Power, iParens[k], iParens[n - k]], {k, n - 1}]], SameTest -> Equal]; Table[Length[iParens[n]], {n, 10}]
Extensions
a(11) and a(12) (unconfirmed) from Alonso del Arte, Nov 17 2011
a(12) is said to be either 2919 or 2926. The value will not be included in the data section until it has been confirmed. - N. J. A. Sloane, Nov 26 2015
Comments