A199205
Number of distinct values taken by 4th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.
Original entry on oeis.org
1, 1, 2, 4, 9, 17, 30, 50, 77, 113, 156, 212, 279, 355, 447, 560, 684, 822, 985, 1171, 1375, 1599, 1856, 2134, 2445, 2769, 3125, 3519, 3939, 4376, 4857, 5372, 5914, 6484, 7083, 7717, 8411, 9130, 9882, 10683, 11524, 12393
Offset: 1
a(5) = 9 because the A000108(4) = 14 possible parenthesizations of x^x^x^x^x lead to 9 different values of the 4th derivative at x=1: (x^(x^(x^(x^x)))) -> 56; (x^(x^((x^x)^x))) -> 80; (x^((x^(x^x))^x)), (x^((x^x)^(x^x))) -> 104; ((x^x)^(x^(x^x))), ((x^(x^(x^x)))^x) -> 124; ((x^(x^x))^(x^x)) -> 148; (x^(((x^x)^x)^x)) -> 152; ((x^x)^((x^x)^x)), ((x^((x^x)^x))^x) -> 172; (((x^x)^x)^(x^x)), (((x^(x^x))^x)^x), (((x^x)^(x^x))^x) -> 228; ((((x^x)^x)^x)^x) -> 344.
Cf.
A000081 (distinct functions),
A000108 (parenthesizations),
A000012 (first derivatives),
A028310 (2nd derivatives),
A199085 (3rd derivatives),
A199296 (5th derivatives),
A002845,
A003018,
A003019,
A145545,
A145546,
A145547,
A145548,
A145549,
A145550,
A082499,
A196244,
A198683,
A215703,
A215834. Column k=4 of
A216368.
-
f:= proc(n) option remember;
`if`(n=1, {[0, 0, 0]},
{seq(seq(seq( [2+g[1], 3*(1 +g[1] +h[1]) +g[2],
8 +12*g[1] +6*h[1]*(1+g[1]) +4*(g[2]+h[2])+g[3]],
h=f(n-j)), g=f(j)), j=1..n-1)})
end:
a:= n-> nops(map(x-> x[3], f(n))):
seq(a(n), n=1..20);
-
f[n_] := f[n] = If[n == 1, {{0, 0, 0}}, Union @ Flatten[#, 3]& @ {Table[ Table[Table[{2 + g[[1]], 3*(1 + g[[1]] + h[[1]]) + g[[2]], 8 + 12*g[[1]] + 6*h[[1]]*(1 + g[[1]]) + 4*(g[[2]] + h[[2]]) + g[[3]]}, {h, f[n - j]}], {g, f[j]}], {j, 1, n - 1}]}];
a[n_] := Length @ Union @ (#[[3]]& /@ f[n]);
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 32}] (* Jean-François Alcover, Jun 08 2018, after Alois P. Heinz *)
A199296
Number of distinct values taken by 5th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 45, 92, 182, 342, 601, 982, 1499, 2169, 2970, 3994, 5297, 6834, 8635, 10714, 13121, 16104, 19674, 23868, 28453, 33637, 39630, 46730
Offset: 1
a(4) = 4 because the A000108(3) = 5 possible parenthesizations of x^x^x^x lead to 4 different values of the 5th derivative at x=1: (x^(x^(x^x))) -> 360; (x^((x^x)^x)) -> 590; ((x^(x^x))^x), ((x^x)^(x^x)) -> 650; (((x^x)^x)^x) -> 1110.
Cf.
A000081 (distinct functions),
A000108 (parenthesizations),
A000012 (first derivatives),
A028310 (2nd derivatives),
A199085 (3rd derivatives),
A199205 (4th derivatives),
A002845,
A003018,
A003019,
A145545,
A145546,
A145547,
A145548,
A145549,
A145550,
A082499,
A196244,
A198683,
A215703,
A215835. Column k=5 of
A216368.
-
f:= proc(n) option remember;
`if`(n=1, {[0, 0, 0, 0]},
{seq(seq(seq([2+g[1], 3*(1 +g[1] +h[1]) +g[2],
8 +12*g[1] +6*h[1]*(1+g[1]) +4*(g[2]+h[2])+g[3],
10+50*h[1]+10*h[2]+5*h[3]+(30+30*h[1]+10*h[2]
+15*g[1])*g[1]+(20+10*h[1])*g[2]+5*g[3]+g[4]],
h=f(n-j)), g=f(j)), j=1..n-1)})
end:
a:= n-> nops(map(x-> x[4], f(n))):
seq(a(n), n=1..20);
-
f[n_] := f[n] = If[n == 1, {{0, 0, 0, 0}}, Union@Flatten[#, 3]& @ {Table[ Table[Table[{2 + g[[1]], 3*(1 + g[[1]] + h[[1]]) + g[[2]], 8 + 12*g[[1]] + 6*h[[1]]*(1 + g[[1]]) + 4*(g[[2]] + h[[2]]) + g[[3]], 10 + 50*h[[1]] + 10*h[[2]] + 5*h[[3]] + (30 + 30*h[[1]] + 10*h[[2]] + 15*g[[1]])*g[[1]] + (20 + 10*h[[1]])*g[[2]] + 5*g[[3]] + g[[4]]}, {h, f[n - j]}], {g, f[j]}], {j, 1, n - 1}]}];
a[n_] := Length@Union@(#[[4]]& /@ f[n]);
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 24}] (* Jean-François Alcover, Sep 01 2023, after Alois P. Heinz *)
A199883
Number of distinct values taken by 6th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 48, 113, 262, 591, 1263, 2505, 4764, 8479, 14285, 22871, 35316, 52755, 76517, 107826, 148914, 202715, 270622
Offset: 1
a(4) = 4 because the A000108(3) = 5 possible parenthesizations of x^x^x^x lead to 4 different values of the 6th derivative at x=1: (x^(x^(x^x))) -> 2934; ((x^x)^(x^x)), ((x^(x^x))^x) -> 4908; (x^((x^x)^x)) -> 5034; (((x^x)^x)^x) -> 8322.
Cf.
A000081 (distinct functions),
A000108 (parenthesizations),
A000012 (first derivatives),
A028310 (2nd derivatives),
A199085 (3rd derivatives),
A199205 (4th derivatives),
A199296 (5th derivatives),
A002845,
A003018,
A003019,
A145545,
A145546,
A145547,
A145548,
A145549,
A145550,
A082499,
A196244,
A198683,
A215703,
A215836. Column k=6 of
A216368.
-
f:= proc(n) option remember;
`if`(n=1, {[0, 0, 0, 0, 0]},
{seq(seq(seq([2+g[1], 3*(1 +g[1] +h[1]) +g[2],
8 +12*g[1] +6*h[1]*(1+g[1]) +4*(g[2]+h[2])+g[3],
10+50*h[1]+10*h[2]+5*h[3]+(30+30*h[1]+10*h[2]
+15*g[1])*g[1]+(20+10*h[1])*g[2]+5*g[3]+g[4],
45*h[1]*g[1]^2+(120+60*h[2]+15*h[3]+60*g[2]+
270*h[1])*g[1]+54+15*h[3]+30*g[3]+6*g[4]+
60*h[1]*g[2]+15*h[1]*g[3]+30*h[1]+ 20*h[2]*g[2]+
100*h[2]+90*h[1]^2+g[5]+60*g[2]+6*h[4]],
h=f(n-j)), g=f(j)), j=1..n-1)})
end:
a:= n-> nops(map(x-> x[5], f(n))):
seq(a(n), n=1..15);
Original entry on oeis.org
1, 1, 2, 5, 13, 32, 79, 193, 478, 1196, 3037, 7802, 20287, 53259, 141069, 376449, 1011295, 2732453, 7421128, 20247355, 55469186, 152524366, 420807220, 1164532203, 3231706847, 8991343356, 25075077684, 70082143952, 196268698259, 550695545855, 1547867058852
Offset: 1
a(4) = 1 - 4 + Sum_{k=1..4} A000081(k) = 1 - 4 + 1 + 1 + 2 + 4 = 5.
a(5) = 1 - 5 + Sum_{k=1..5} A000081(k) = 1 - 5 + 1 + 1 + 2 + 4 + 9 = 13.
-
with(numtheory):
t:= proc(n) option remember; `if`(n<2, n, (add(add(
d*t(d), d=divisors(j))*t(n-j), j=1..n-1))/(n-1))
end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0,
add(b(n-i*j, i-1)*binomial(t(i)+j-1, j), j=0..n/i)))
end:
a:= proc(n) option remember; `if`(n<3, 1,
b(n-1$2) +2*a(n-1) -a(n-2))
end:
seq(a(n), n=1..40); # Alois P. Heinz, Feb 17 2015
-
t[1] = a[1] = 1; t[n_] := t[n] = Sum[k t[k] t[n - k m]/(n-1), {k, n}, {m, (n-1)/k}]; a[n_] := a[n] = a[n-1] + t[n] - 1; Table[a[n], {n, 40}] (* Vladimir Reshetnikov, Aug 12 2016 *)
A199812
Number of distinct values taken by w^w^...^w (with n w's and parentheses inserted in all possible ways) where w is the first transfinite ordinal omega.
Original entry on oeis.org
1, 1, 2, 5, 13, 32, 79, 193, 478, 1196, 3037, 7802, 20287, 53259, 141069, 376449, 1011295, 2732453, 7421128, 20247355
Offset: 1
For n=5 there are 14 possible parenthesizations, but only 13 of them produce distinct ordinals: (((w^w)^w)^w)^w < ((w^w)^w)^(w^w) < ((w^w)^(w^w))^w < ((w^(w^w))^w)^w < (w^(w^w))^(w^w) < (w^w)^((w^w)^w) < (w^((w^w)^w))^w < w^(((w^w)^w)^w) < (w^w)^(w^(w^w)) = w^((w^w)^(w^w)) < (w^(w^(w^w)))^w < w^((w^(w^w))^w) < w^(w^((w^w)^w)) < w^(w^(w^(w^w))). So, a(5)=13.
-
(* Slow exhaustive search *)
_ \[Precedes] {} = False;
{} \[Precedes] {} = True;
{a_ \[Diamond] , __} \[Precedes] {b_ \[Diamond] , __} := a \[Precedes] b /; a =!= b;
{a_ \[Diamond] m_, _} \[Precedes] {a_ \[Diamond] n_, _} := m < n /; m != n;
{z_, x___} \[Precedes] {z_, y___} := {x} \[Precedes] {y};
m_ \[CirclePlus] {} := m;
{} \[CirclePlus] n_ := n;
{x___, a_ \[Diamond] m_} \[CirclePlus] {a_ \[Diamond] n_, y___} := {x, a \[Diamond] (m + n), y};
{x___, a_ \[Diamond] m_} \[CirclePlus] z : {b_ \[Diamond] n_, y___} := If[a \[Precedes] b, {x} \[CirclePlus] z, {x, a \[Diamond] m, b \[Diamond] n, y}];
{} \[CircleTimes] _ = {};
_ \[CircleTimes] {} = {};
{a_ \[Diamond] m_, x___} \[CircleTimes] {b_ \[Diamond] n_} := If[b === {}, {a \[Diamond] (m n), x}, {(a \[CirclePlus] b) \[Diamond] n}];
x_ \[CircleTimes] {y_, z__} := x \[CircleTimes] {y} \[CirclePlus] x \[CircleTimes] {z};
f[1] = {{{} \[Diamond] 1}};
f[n_] := f[n] = Union[Flatten[Table[Outer[#1 \[CircleTimes] {#2 \[Diamond] 1} &, f[k], f[n - k], 1], {k, n - 1}], 2]];
Table[Length[f[n]], {n, 1, 17}]
A215796
Number of distinct values taken by 7th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 48, 115, 283, 691, 1681, 3988, 9241, 20681, 44217, 89644
Offset: 1
a(4) = 4 because the A000108(3) = 5 possible parenthesizations of x^x^x^x lead to 4 different values of the 7th derivative at x=1: (x^(x^(x^x))) -> 26054; ((x^x)^(x^x)), ((x^(x^x))^x) -> 41090; (x^((x^x)^x)) -> 47110; (((x^x)^x)^x) -> 70098.
Cf.
A000081 (distinct functions),
A000108 (parenthesizations),
A000012 (first derivatives),
A028310 (2nd derivatives),
A199085 (3rd derivatives),
A199205 (4th derivatives),
A199296 (5th derivatives),
A199883 (6th derivatives),
A002845,
A003018,
A003019,
A145545,
A145546,
A145547,
A145548,
A145549,
A145550,
A082499,
A196244,
A198683,
A215703,
A215837.
-
T:= proc(n) T(n):=`if`(n=1, [x], map(h-> x^h, g(n-1$2))) end:
g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(
seq(mul(T(i)[w[t]-t+1], t=1..j)*v, v=g(n-i*j, i-1)), w=
combinat[choose]([$1..nops(T(i))+j-1], j)), j=0..n/i)])
end:
f:= proc() local i, l; i, l:= 0, []; proc(n) while n>
nops(l) do i:= i+1; l:= [l[], T(i)[]] od; l[n] end
end():
a:= n-> nops({map(f-> 7!*coeff(series(subs(x=x+1, f), x, 8), x, 7), T(n))[]}):
seq(a(n), n=1..12);
A215971
Number of distinct values taken by 8th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 48, 115, 286, 717, 1815, 4574, 11505, 28546, 69705, 166010
Offset: 1
a(4) = 4 because the A000108(3) = 5 possible parenthesizations of x^x^x^x lead to 4 different values of the 8th derivative at x=1: (x^(x^(x^x))) -> 269128; ((x^x)^(x^x)), ((x^(x^x))^x) -> 382520; (x^((x^x)^x)) -> 511216; (((x^x)^x)^x) -> 646272.
Cf.
A000081 (distinct functions),
A000108 (parenthesizations),
A000012 (first derivatives),
A028310 (2nd derivatives),
A199085 (3rd derivatives),
A199205 (4th derivatives),
A199296 (5th derivatives),
A199883 (6th derivatives),
A002845,
A003018,
A003019,
A145545,
A145546,
A145547,
A145548,
A145549,
A145550,
A082499,
A196244,
A198683,
A215703,
A215838. Column k=8 of
A216368.
-
# load programs from A215703, then:
a:= n-> nops({map(f-> 8!*coeff(series(subs(x=x+1, f),
x, 9), x, 8), T(n))[]}):
seq(a(n), n=1..10);
A216062
Number of distinct values taken by 9th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1838, 4734, 12247, 31617, 81208
Offset: 1
Cf.
A000081 (distinct functions),
A000108 (parenthesizations),
A000012 (first derivatives),
A028310 (2nd derivatives),
A199085 (3rd derivatives),
A199205 (4th derivatives),
A199296 (5th derivatives),
A199883 (6th derivatives),
A002845,
A003018,
A003019,
A145545,
A145546,
A145547,
A145548,
A145549,
A145550,
A082499,
A196244,
A198683,
A215703,
A215839. Column k=9 of
A216368.
-
# load programs from A215703, then:
a:= n-> nops({map(f-> 9!*coeff(series(subs(x=x+1, f),
x, 10), x, 9), T(n))[]}):
seq(a(n), n=1..11);
A216403
Number of distinct values taken by 10th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4763, 12452, 32711, 86239
Offset: 1
a(4) = 4 because the A000108(3) = 5 possible parenthesizations of x^x^x^x lead to 4 different values of the 10th derivative at x=1: (x^(x^(x^x))) -> 37616880; ((x^x)^(x^x)), ((x^(x^x))^x) -> 42409440; (x^((x^x)^x)) -> 77899320; (((x^x)^x)^x) -> 66712680.
Cf.
A000081 (distinct functions),
A000108 (parenthesizations),
A000012 (first derivatives),
A028310 (2nd derivatives),
A199085 (3rd derivatives),
A199205 (4th derivatives),
A199296 (5th derivatives),
A199883 (6th derivatives),
A002845,
A003018,
A003019,
A145545,
A145546,
A145547,
A145548,
A145549,
A145550,
A082499,
A196244,
A198683,
A215703,
A215840. Column k=10 of
A216368.
-
# load programs from A215703, then:
a:= n-> nops({map(f-> 10!*coeff(series(subs(x=x+1, f),
x, 11), x, 10), T(n))[]}):
seq(a(n), n=1..11);
A003006
Number of n-level ladder expressions with A001622.
Original entry on oeis.org
1, 1, 2, 3, 7, 15, 35, 81, 195, 473, 1170, 2920, 7378, 18787, 48242, 124658, 324095, 846872, 2223352, 5861011, 15508423, 41173560, 109648734
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
ClearAll[phi, t, a]; t[1] = {0}; t[n_Integer] := t[n] = DeleteDuplicates[Flatten[Table[Outer[phi^#1 + #2 &, t[k], t[n - k]], {k, n - 1}]] /. phi^k_Integer :> Fibonacci[k] phi + Fibonacci[k - 1]]; a[n_Integer] := a[n] = Length[t[n]]; Table[a[n], {n, 23}]
Showing 1-10 of 12 results.
Comments