A198726 Number of partitions of n into positive Loeschian numbers (cf. A003136).
1, 1, 1, 2, 3, 3, 4, 6, 7, 9, 11, 13, 17, 21, 24, 29, 37, 42, 49, 60, 70, 82, 96, 111, 129, 152, 173, 199, 234, 266, 302, 349, 399, 451, 515, 585, 661, 752, 847, 954, 1081, 1215, 1359, 1531, 1719, 1917, 2147, 2400, 2675, 2985, 3322, 3690, 4110, 4563, 5048, 5603
Offset: 0
Keywords
Examples
a(10) = #{9+1, 7+3, 7+1+1+1, 4+4+1+1, 4+3+3, 4+3+1+1+1, 4+6x1, 3+3+3+1, 3+3+1+1+1+1, 3+7x1, 10x1} = 11; a(11) = #{9+1+1, 7+4, 7+3+1, 7+1+1+1+1, 4+4+3, 4+4+1+1+1, 4+3+3+1, 4+3+4x1, 4+7x1, 3+3+3+1+1, 3+3+5x1, 3+8x1, 11x1} = 13; a(12) = #{12, 9+3, 9+1+1+1, 7+4+1, 7+3+1+1, 7+5x1, 4+4+4, 4+4+3+1, 4+4+4x1, 4+3+3+1+1, 4+3+5x1, 4+8x1, 3+3+3+3, 3+3+3+1+1+1, 3+3+6x1, 3+9x1, 12x1} = 17.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
Programs
-
Haskell
import Data.MemoCombinators (memo2, list, integral) a198726 n = a198726_list !! n a198726_list = f 0 [] $ tail a003136_list where f u vs ws'@(w:ws) | u < w = (p' vs u) : f (u + 1) vs ws' | otherwise = f u (vs ++ [w]) ws p' = memo2 (list integral) integral p p _ 0 = 1 p [] _ = 0 p ks'@(k:ks) m = if m < k then 0 else p' ks' (m - k) + p' ks m -- Reinhard Zumkeller, Nov 16 2015, Oct 30 2011