cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198772 Numbers having exactly one representation by the quadratic form x^2 + xy + y^2 with 0 <= x <= y.

Original entry on oeis.org

0, 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27, 28, 31, 36, 37, 39, 43, 48, 52, 57, 61, 63, 64, 67, 73, 75, 76, 79, 81, 84, 93, 97, 100, 103, 108, 109, 111, 112, 117, 121, 124, 127, 129, 139, 144, 148, 151, 156, 157, 163, 171, 172, 175, 181, 183, 189, 192, 193
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 30 2011

Keywords

Examples

			a(20) = 48 = 4^2 + 4*4 + 4^2, A088534(48) = 1;
a(21) = 52 = 2^2 + 2*6 + 6^2, A088534(52) = 1.
		

Crossrefs

Subsequence of Loeschian numbers A003136.
Complement of A118886 with respect to A003136.

Programs

  • Haskell
    a198772 n = a198772_list !! (n-1)
    a198772_list = filter ((== 1) . a088534) a003136_list
    
  • Julia
    function isA198772(n)
        M = Int(round(2*sqrt(n/3)))
        count = 0
        for y in 0:M, x in 0:y
            n == x^2 + y^2 + x*y && (count += 1)
            count == 2 && break
        end
        return count == 1
    end
    A198772list(upto) = [n for n in 0:upto if isA198772(n)]
    A198772list(193) |> println # Peter Luschny, Mar 17 2018
  • Mathematica
    amax = 200; xmax = Sqrt[amax] // Ceiling; Clear[f]; f[_] = 0; Do[q = x^2 + x y + y^2; f[q] = f[q] + 1, {x, 0, xmax}, {y, x, xmax}];
    A198772 = Select[Range[0, 3 xmax^2], # <= amax && f[#] == 1&] (* Jean-François Alcover, Jun 21 2018 *)

Formula

A088534(a(n)) = 1.
a(n) = A034022(n) for n <= 32.