cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198799 Smallest m such that m can be written in exactly n ways as x^2 + xy + y^2 with 0 <= x <= y.

Original entry on oeis.org

2, 0, 49, 637, 1729, 8281, 12103, 1529437, 53599, 157339, 593047, 19882681, 375193, 68574961, 2989441, 7709611, 1983163, 47738317081, 4877509, 21169376772835837, 18384457, 377770939, 69771386503, 146482609, 13882141, 1302924259, 3418797938647, 92672671
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 30 2011

Keywords

Comments

10^12 < a(19) <= 21169376772835837. a(20) = 18384457. a(21) = 377770939. - Donovan Johnson, Nov 07 2011

Examples

			a(0) = A034020(1) = 2;
a(1) = A198772(1) = 0;
a(2) = A198773(1) = A118886(1) = 49;
a(3) = A198774(1) = A118886(28) = 637;
a(4) = A198775(1) = A118886(97) = 1729;
a(5) = 8281 = A118886(569) = 0 + 0*91 + 91^2 = 11^2 + 11*85 + 85^2 = 19^2 + 19*80 + 80^2 = 39^2 + 39*65 + 65^2 = 49^2 + 49*56 + 56^2;
a(6) = 12103 = A118886(862) = 2^2 + 2*109 + 109^2 = 21^2 + 21*98 + 98^2 = 27^2 + 27*94 + 94^2 = 34^2 + 34*89 + 89^2 = 49^2 + 49*77 + 77^2 = 61^2 + 61*66 + 66^2.
405769 = Q(0, 637) = Q(77, 595) = Q(133, 560) = Q(145, 552) = Q(200, 513) = Q(208, 507) = Q(273, 455) = Q(343, 392), where Q(x, y) = x^2 + xy + y^2 but it is not a(7) since sequence definition focuses 'exactly'. - _M. F. Hasler_, Mar 06 2018
		

Crossrefs

Cf. A300419 (analog, with x,y >= 1).

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (fromJust)
    a198799 n = fromJust $ elemIndex n a088534_list
    
  • PARI
    a(n)=for(k=0,oo,A088534(k)==n&&return(k)) \\ M. F. Hasler, Mar 06 2018

Formula

A088534(a(n)) = n and A088534(m) <> n for m < a(n).

Extensions

a(7)-a(18) from Donovan Johnson, Nov 07 2011
More terms from Seth A. Troisi, Apr 23 2022