A198862 Sum of the n-th antidiagonal in the triangle A192011.
-1, 2, 2, 2, 3, 1, -1, -3, -6, -7, -6, -3, 3, 10, 16, 19, 16, 6, -10, -29, -45, -51, -41, -12, 33, 84, 125, 137, 104, 20, -105, -242, -346, -366, -261, -19, 327, 693, 954, 973, 646, -47, -1001, -1974, -2620, -2573, -1572, 402, 3022
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,-1).
Programs
-
Maple
A198862 := proc(n) add( A192011(n-k,k),k=0..floor(n/2)) ; end proc: seq(A198862(n),n=0..80) ; # R. J. Mathar, Nov 03 2011
Formula
a(n) = Sum_{k=0..floor(n/2)} A192011(n-k,k).
a(n) = a(n-1) - a(n-4), n > 3.
From R. J. Mathar, Nov 02 2011: (Start)
G.f.: (-1 + 3*x) / (1 - x + x^4).
Comments